

2024

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Removal of Vulnerabilities in Binary Code by Program Model

Checking and Concolic Execution

Luís Pedro Félix Ferreirinha

Mestrado em Informática

Dissertação orientada por:

Profª. Doutora Ibéria Vitória de Sousa Medeiros

Acknowledgments

First, I would like to express my gratitude to my advisor, Prof. Ibéria Medeiros, for her belief

in my potential. When I was still a Physics student, she saw something in me and welcomed me

under her supervision. Her support for my unorthodox ideas, when no one else would, has been

invaluable. Without her guidance and encouragement, my achievements in the field of Computer

Science would not have been possible.

I also wish to thank all my family, loved ones, and friends for their constant support throughout

this journey. A special mention goes to my mother, who especially supported me through tough

times, and has been a pillar of strength for me. Her encouragement has been a driving force behind

my success.

This work was supported by the European Commission through the H2020 programme un-

der grant agreement 871259 (ADMORPH), and by FCT through the LASIGE Research Unit,

ref. UIDB/00408/2020 (https://doi.org/10.54499/UIDB/00408/2020) and ref. UIDP/00408/2020

(https://doi.org/10.54499/UIDP/00408/2020).

ii

https://doi.org/10.54499/UIDB/00408/202
https://doi.org/10.54499/ UIDP/00408/2020

For the eternal pursuit of knowledge.

Resumo

Com o avanço da tecnologia nas últimas décadas a dependência que temos desta também au-

mentou. Desde sistemas de gestão de eletricidade, gás, água e até sistemas de aviação e gestão

de tráfego aéreo. Todos estes são geridos por software e o seu funcionamento correto influencia

diretamente o bem estar da população. Devido a este avanço, a complexidade dos sistemas utiliza-

dos também experienciou um crescimento significativo, o que levou ao aumento da complexidade

do software desenvolvido para estes, e consequentemente facilitou o aparecimento de falhas de

segurança e vulnerabilidades no código produzido.

A existência destas falhas muitas vezes é ignorada pelos desenvolvedores, que por falta de

conhecimento, de tempo ou por ser um produto em fim-de-vida, não apresentam correções para

estas. Isto leva a que atacantes motivados procurem a existência destas no software e as tentem

explorar para seu benefı́cio. A exploração destas por parte de agentes maliciosos, pode levar a

resultados catastróficos, como à perda de dados, destruição de sistemas e possı́vel perda de vida

no caso de sistemas crı́ticos.

Estes sistemas são frequentemente construı́dos utilizando a linguagem de programa C, uma lin-

guagem que permite aos programadores terem acesso à memória de baixo nı́vel, tornando esta uma

das linguagem mais populares para sistemas crı́ticos. Devido à sua natureza de baixo nı́vel, esta

linguagem também é uma das mais propı́cias a vulnerabilidades de corrupção de memória, como

por exemplo a escrita além dos limites de um buffer, que são segmentos de memória com um ta-

manho pré-definido de elementos. Estas vulnerabilidades geralmente ocorrem quando o programa

não assegura que a operação de escrita é efetuada dentro dos limites do buffer. A exploração dessas

vulnerabilidades pode levar um atacante a obter controlo total do sistema, levando à classificação

destas como umas das mais perigosas.

De forma a descobrir estas vulnerabilidades, foram criadas técnicas de análise, entre estas as

mais populares pertencem a uma de duas categorias: análise estática e análise dinâmica. A análise

estática consiste em analisar o código fonte de uma aplicação, sem o executar; e a análise dinâmica

consiste em executar o código da aplicação e analisar o processo de execução e os resultados deste.

Ambas estas técnicas têm desvantagens, a análise estática encontra dificuldades com precisão,

resultando num número elevado de casos de falsos positivos, em contraste a análise dinâmica, não

consegue escalar para aplicações de maior dimensão.

Os problemas encontrados por estas técnicas tradicionais são acrescidos quando estas são apli-

cadas ao código binário de C. Este é resultado do processo de compilação do código fonte C, um

vi

processo que causa uma grande perda de informação do código original. Devido a este problema,

o principal objectivo desta dissertação é criar um novo método, recorrendo a técnicas formais de

model checking (verificação de modelos) e concolic execution (execução concólica), de forma a

ultrapassar as limitações das técnicas tradicionais.

O método proposto por esta dissertação consiste em utilizar a técnica de model checking para

verificar propriedades de segurança na memória pilha de um programa binário, com intento de en-

contrar vulnerabilidades de buffer overflow. Este método foi implementado numa ferramenta de-

nominada BASICS (Binary Analysis and Stack Integrity Checker System), que efetua a verificação

destas propriedades em ficheiros de programas binários e identifica possı́veis vulnerabilidades de

buffer overflow procedendo com a correção desta. Para efetuar a correção dos programas a ferra-

menta recorre a um método de trampolim, que consiste em redirecionar a execução do programa

para uma secção de código correta e evitar a secção vulnerável.

De forma a implementar a ferramenta, foi criado um modelo teórico para a memória pilha,

este modelo consiste em estados de memória que contêm os frame de pilha ativos para uma dada

instância de execução do programa, e por sua vez estes frames contêm o estado de escrita dos bytes

daquela pilha. Baseado neste modelo, a ferramenta cria um estado de espaços, iterando por todos

os blocos de código do grafo de controlo de fluxo do binário, e fazendo corresponder as instruções

de assembly a operadores de memória que modificam o estado da pilha. Quando são encontradas

chamadas a funções, é efetuada concolic execution, de forma a simular o resultado desta chamada

na pilha.

Com o espaço de estados gerados, são depois verificadas as propriedades de segurança neste.

Estas propriedades são definidas em Lógica Temporal Linear, e modelam o uso correto da pilha de

um programa ao longo da execução deste. Para tal foram implementadas propriedades que verifi-

cam a integridade do return address, do stack base pointer, do stack canary, e outras que detectam

a ocorrência de buffer underflows. Qualquer violação destas propriedades, indica a existência de

uma possı́vel vulnerabilidade. Sempre que a ferramenta detecta uma violação destas propriedades

é emitido um contra-exemplo que contém as instruções que levaram o programa a chegar a um

estado inválido. Com base nestes contra-exemplos, é executada uma análise de fluxo invertido de

forma a determinar a instrução ou conjunto destas que originaram a vulnerabilidade.

Uma vez detectada a localização das vulnerabilidades, estas são corrigidas, aplicando o método

do trampolim. Esta correção vai redirecionar o fluxo de execução do programa para um patch tem-

plate, que são conjuntos de código previamente definidos e compilados, e que foram concebidos

com o propósito de limitar o conteúdo escrito para buffers na pilha, impedindo assim as vulnera-

bilidades de buffer overflow, mas mantendo o comportamento original desejado do programa. De

forma a garantir que estas correções são válidas, são utilizados inputs obtidos durante o processo

de concolic execution. Estes inputs são depois utilizados para testar o programa binário antes e

após a correção. Com estes testes, é determinado se a correção aplicada impede o programa de

sofrer paragens inesperadas. Se for esse o caso, a correção é considerada como válida.

Para avaliar a ferramenta foi utilizado, um conjunto de programas teste obtidos do NIST SARD

vii

e um conjunto de aplicações de código aberto obtidas dos websites SourceForge, GitHub e Gitlab.

Com a análise dos resultados de teste com os programas do NIST SARD, foi possı́vel concluir que

a ferramenta é capaz de detectar vulnerabilidades de buffer overflow com uma precisão aceitável,

que o espaço de estados da memória do programa gerado pela ferramenta refletia com exatidão

as operações de memória do código fonte, e que as propriedades de segurança definidas modelam

o comportamento de buffers overflows destrutivos e permitem a detecção destas vulnerabilidades.

Para este conjunto de programas teste, a ferramenta também aplicou correções para as vulnera-

bilidades detectadas, permitindo concluir que as correções aplicadas são eficazes em remover o

comportamento vulnerável dos programas, mas podem comprometer a funcionalidade destes em

alguns casos.

Para as aplicações de código livre uma avaliação sobre a performance da ferramenta foi efetu-

ada. Permitindo concluir que esta tem problemas de explosão do espaço de estados, um problema

comum em ferramentas de model checking, que a impede de efetuar a verificação de binários de

maior tamanho.

A ferramenta criada permite aos utilizadores a implementação das suas próprias propriedades

se segurança, permitindo assim aumentar as capacidades de deteção desta para além das vulne-

rabilidades atuais. Possibilitando também modelar comportamentos além de vulnerabilidades,

como por exemplo a integridade de certos dados na pilha. Além de ser possı́vel configurar as

propriedades também é possı́vel adicionar patch templates. Isto permite a um utilizador expandir

a capacidade de correção da ferramenta.

Esta dissertação contribuiu para o avanço das técnicas de descoberta de vulnerabilidades em

ficheiros binários com uma nova abordagem baseada em model checking e concolic execution, e

com a criação do BASICS, numa ferramenta customizável de código aberto que implementa esta

nova abordagem.

Palavras-chave: Verificação de Modelos, Vulnerabilidades de Overflow na Pilha, Código

Binário, Execução Concólica, Análise Estática

viii

Abstract

The C programming language, prevalent in Cyber-Physical systems, is crucial for system con-

trol where reliability is critical. However, it is also commonly susceptible to vulnerabilities, par-

ticularly buffer overflows, which are ranked among the most dangerous due to their potential for

catastrophic consequences. Traditional vulnerability discovery techniques such as static and dy-

namic analysis, often struggle with scalability and precision when applied directly to the binary

code of C. This dissertation introduces a novel approach designed to overcome these limitations

by leveraging model checking and concolic execution techniques to verify security properties,

defined in Linear Temporal Logic, of a program’s stack memory in binary code, and trampoline

techniques to fix the identified security issues. The developed tool, BASICS: Binary Analysis and

Stack Integrity Checker with Patching, constructs a memory state space from a program’s control

flow graph and simulates function calls and loop constructs using concolic execution. Security

properties defined in LTL model the behavior of buffer overflows, and BASICS identifies these

vulnerabilities by analyzing counter-example traces generated when a security property is violated.

The tool then addresses these vulnerabilities with a trampoline-based patching method. To ensure

the effectiveness of the patches, BASICS tests the patched binaries with crash-inducing inputs ex-

tracted during concolic execution, confirming the successful removal of vulnerabilities. BASICS

was evaluated using a dataset of small programs from NIST SARD and larger open-source ap-

plications. The evaluation demonstrated the tool’s effectiveness in detecting and patching buffer

overflow vulnerabilities. This dissertation contributes to the field of computer security by intro-

ducing a new model checking approach for binary analysis, providing a framework for formal

reasoning about stack memory, and delivering a customizable, open-source tool for detecting and

patching vulnerabilities.

Keywords: Model Checking, Stack Buffer Overflow, Binary Code, Concolic Execution, Static

Analysis

x

xii

Contents

List of Figures xvii

List of Tables xix

List of Listings xxi

List of Algorithms xxiii

1 Introduction 1
1.1 Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 3

1.4 Structure of the document . 4

2 Background 7
2.1 Software Vulnerabilities . 7

2.1.1 Buffer Overflow . 8

2.1.2 The Stack Region . 10

2.2 Model Checking . 11

2.2.1 Linear Temporal Logic . 13

2.2.2 ω-automaton . 14

2.2.3 Satisfiability Modulo Theories . 15

2.3 Concolic Execution . 16

2.4 Binary Programs . 16

2.4.1 Angr Framework . 17

2.4.2 Binary Patching . 17

3 Related Work 19
3.1 Vulnerability Discovery Techniques . 19

3.1.1 Detecting Vulnerabilities in Source Code 19

3.1.2 Vulnerability Discovery in Binary Programs 20

3.1.3 Fuzzing . 20

3.2 Model Checking in Software Security . 20

xiii

3.2.1 Formal Verification of C programs . 21

3.2.2 Model Checking Binaries . 21

3.3 Code Repair . 22

3.3.1 Source Code Repair . 22

3.3.2 Binary Patching . 22

4 BASICS Solution 23
4.1 Challenges . 23

4.1.1 Performing Model Checking on x86-64 binaries 23

4.1.2 Detecting Vulnerabilities through Model Checking 24

4.1.3 Performing Concolic Execution on Binary Code 24

4.1.4 Patching Vulnerabilities in Binary Programs 24

4.2 BASICS a Model Checker for x86-64 Binaries 25

4.2.1 Binary Data Extractor . 26

4.2.2 Security Property Converter . 27

4.2.3 Model Checker . 27

4.2.4 Vulnerability Patcher and Validator . 28

5 BASICS Design and Implementation 31
5.1 Framework Choices . 31

5.1.1 Angr Framework . 31

5.1.2 Why not use SPIN? . 31

5.2 Extracting data from the binary . 32

5.2.1 Obtaining the program’s CFG . 32

5.2.2 User Function Data . 33

5.3 Model Checker . 34

5.3.1 Theoretical Stack Memory Model . 34

5.3.2 Memory Transition Operators . 36

5.3.3 Generating the State Space . 38

5.3.4 Simulating Calls and Loops through Concolic Execution 41

5.3.5 Verifying LTL Properties . 43

5.4 Translating LTL Security Properties . 45

5.4.1 Security Property Specification . 45

5.4.2 Modeling Vulnerabilities with Security Properties 47

5.4.3 Converting LTL to ω-automaton . 49

5.5 Identifying and Patching Vulnerabilities . 50

5.5.1 Correlating Security Properties to CWE vulnerability classes 50

5.5.2 Examining Counter-Example Traces . 50

5.5.3 Patching Process . 51

5.5.4 Validating Patches . 53

xiv

6 Evaluation 55
6.1 Evaluation Setup . 55

6.1.1 Experimental Setup . 57

6.2 Evaluation with the NIST SARD dataset . 57

6.2.1 Dataset Characterization . 57

6.2.2 Detection Results . 57

6.2.3 Patching Results . 60

6.3 Evaluation with Open-Source Applications . 61

6.3.1 Results . 61

6.3.2 Performance Evaluation . 61

7 Conclusion 63
7.1 Limitations . 64

7.2 Future Work . 65

7.3 Final Remarks . 65

Acronyms 67

References 74

A LTL Security Properties 75
A.1 RIP Integrity . 75

A.2 RBP Integrity . 75

A.3 Canary Integrity . 75

A.4 No gets usage . 75

A.5 No off by one overflow . 75

A.6 No underflow clib . 76

A.7 No underflow loops . 76

B Patch Templates 77
B.1 gets . 77

B.2 gets unknown buffer size . 77

B.3 strcpy . 77

B.4 strcpy unknown buffer size . 78

B.5 sprintf . 78

B.6 sprintf unknown buffer size . 78

B.7 strcat . 79

B.8 strcat unknown buffer size . 79

B.9 scanf . 79

B.10 scanf unknown buffer size . 80

xv

List of Figures

2.1 Stack buffer overflow of Listing 2.2 . 9

2.2 Stack Frame layout . 10

2.3 State Transition Graph for the system modeled in Listing 2.3 13

2.4 Finite State Automaton . 15

2.5 Büchi Automaton for ♢□p . 16

2.6 Simplified example of the trampoline method. Program control flow follows the

arrows . 18

4.1 Architecture for BASICS . 26

5.1 Small section of the Control Flow Graph obtained from the assembled C program

of Listing 2.1 . 33

5.2 Example of a Stack Frame . 35

5.3 Automaton for the Byte States . 35

5.4 Example of a Push operation of Non-Critical data 37

5.5 Example of a Pop operation . 37

5.6 Example of a Write operation . 38

5.7 Example of a Sub operation . 38

5.8 Example of the State Space generated for the code in Listing 5.3 automatically

using the flag --draw-state-space in BASICS 41

5.9 Reverse Flow Analysis of a Basic Black containing a Call. 42

5.10 Emulation of a function call through Concolic Execution 42

5.11 Omega automaton for the security property ”No Gets Usage” A.4 43

5.12 Example of a Underflow due to a Loop represented in the Memory Model 48

5.13 Final Omega Automata obtained for the RIP Integrity Security Property 50

6.1 Confusion Matrix . 56

xvii

List of Tables

5.1 Direct and Indirect Memory Operations . 36

5.2 Mapping of x86-64 to Operation Types . 37

6.1 Breakdown of the test cases obtained from NIST SARD. 57

6.2 Confusion matrix for the classification results of the NIST SARD dataset. 58

6.3 Metrics obtained for the classification results of the NIST SARD dataset 58

6.4 Breakdown of the patches performed per function. 60

6.5 Evaluation Results for Open-Source Applications 61

xix

List of Listings

2.1 Stack Overflow Example in C . 8

2.2 Copy function’s x86-64 Assembly code . 9

2.3 Critical Section problem modeled with Promela 12

5.1 Unloaded C-Library Functions . 32

5.2 Example of a function name map . 33

5.3 Small example C program . 40

5.4 Example of a Model Checking Report . 45

5.5 Contents of rip integrity.ltl . 49

5.6 Never claim for the RIP integrity property . 49

5.7 Security properties mapped to CWE vulnerability classes 51

5.8 Patch template for strcpy function . 52

5.9 Patch template for strcpy function with unknown rdi buffer size 52

5.10 E9Patch Command Example . 53

5.11 Report emitted for a successful patch . 53

6.1 Example of a buffer overflow not modeled by the defined security properties in

Appendix A. 59

B.1 Patch template for gets function . 77

B.2 Patch template for gets function with unknown rdi buffer size 77

B.3 Patch template for strcpy function . 77

B.4 Patch template for strcpy function with unknown rdi buffer size 78

B.5 Patch template for sprintf function . 78

B.6 Patch template for sprintf function with unknown rdi buffer size 78

B.7 Patch template for strcat function . 79

B.8 Patch template for strcat function with unknown rdi buffer size 79

B.9 Patch template for scanf function . 79

B.10 Patch template for scanf function with unknown rdi buffer size 80

xxi

List of Algorithms

1 Explore State Space . 40

2 Model Checking Algorithm for ω-automaton 44

xxiii

Chapter 1

Introduction

Software powers the systems of our world, from the smallest gadgets in our homes to the largest

machines in our industries. It is essential that this software does not just work, but works without

fail, preventing errors that could lead to serious consequences. As our reliance on technology

grows, so does the need for software that is not just functional, but secure and dependable.

Most of this software is written in C programming language, particularly in cyber-physical

systems where reliability is crucial. C allows programmers to work close to a system’s hardware,

allowing for greater speed and flexibility, but this comes with significant risks. The language

leaves room for vulnerabilities such as buffer overflows, where the lack of safeguards can lead to

system compromises and failures. CWE [15] ranks Out-of-bounds Writes as the most dangerous

software weakness, this includes Stack-based Buffer Overflow vulnerabilities. These latter ones

are especially dangerous, as shown by Aleph One [46], an attacker can hijack the flow of execution

of the program and execute arbitrary code, allowing full access to the system.

The task of detecting these vulnerabilities has been a very researched topic, leading to the

development of different tools to find these vulnerabilities [33, 30, 51, 37, 4]. These tools employ

a variety of different analysis methods, but they often use one of the following approaches: Static

Analysis or Dynamic Analysis. Static analysis techniques analyze a program’s code without exe-

cuting it, allowing high code coverage but at the cost of a higher number of false positives [43]. In

contrast, Dynamic analysis techniques execute the code of a program [64], this allows these tools

to more accurately detect vulnerabilities and achieve a lower rate of false positives but it sacri-

fices code coverage. Some tools such as Arbiter [61], employ both techniques to achieve higher

scalability and precision.

1.1 Motivation

Despite all the security mechanisms and safeguards of modern compilers and operating systems,

software vulnerabilities still exist in released C software, i.e., binary programs (or machine-

language). When these vulnerabilities are found and reported to the public, the vendors cannot

always provide a patch, leading to software that remains vulnerable sometimes upwards of 12

months after the original discovery of a flaw [28].

1

Chapter 1. Introduction 2

To mitigate this issue, methods for automatically patching vulnerabilities have been a topic

of research. While most methods target source code, there has been progress in binary patching

as well. For instance, Ferreira [21] has advanced binary patching through the use of executable

instrumentation with a trampoline technique. However, these methods require accurate identifica-

tion of the vulnerability’s exploit vector, a challenging task with disassembled binaries where the

program is reduced to Assembly Instructions (the machine-language understandable by humans),

offering little insight into the program’s higher-level logic.

This leads to the need for a scalable and accurate analysis method to detect vulnerabilities

in assembly code. While dynamic analysis offers accuracy, it falls short in scalability for large

binaries. Conversely, static analysis scales well but often lacks precision. The question then

arises: can we devise a tool that is both scalable and accurate?

This dissertation focuses on the development of a static analysis approach capable of detecting

buffer overflow vulnerabilities in compiled C binaries and patching them, the focus will be on

detecting the vulnerabilities via a formal method called Model Checking and Concolic Execution.

Model Checking is a technique for verifying finite state systems, this is accomplished by perform-

ing an exhaustive search of the state space of the system to determine if some specification is

true or not [39]. Concolic Execution is a hybrid technique that combines Symbolic and Concrete

execution that can be used to determine inputs for a program [56].

To detect vulnerabilities using model checking and concolic execution, we will first build a

mathematical model representing the program’s stack from the disassembled binary, a state space

composed of each function’s stack frame will then be generated according to a list of transition

operators. During this construction, we will simulate C Library function calls and Loops (up to a

maximum bound) using concolic execution, to increase the accuracy of the state space. Within this

framework, we will specifically model buffer overflow vulnerabilities, along with other potential

security issues, to conduct a comprehensive search within the state space. Once a vulnerability is

verified, we will implement a corrective patch using the trampoline method detailed in [21].

Model checking is a proven technique for verifying security properties in C programs [12], yet

its application to assembly code has been limited due to state space explosion issues. While there

have been instances of its use in binary analysis for malware detection [44], showing significant

potential, the specific modeling of a binary’s stack to verify memory structure properties and detect

buffer overflow vulnerabilities remains an unexplored area.

1.2 Objectives

Through this dissertation, we aimed to develop a novel method for detecting buffer overflow vul-

nerabilities in binary programs and implement this approach in a tool capable of detecting these

vulnerabilities, correcting their behavior, and verifying the effectiveness of the applied corrections.

To achieve this, we defined several goals to help us reach our final objective.

• Research existing model checking approaches for binary code, focusing on how they model

Chapter 1. Introduction 3

binary programs and specify their properties.

• Identify how stack buffer overflow vulnerabilities interact with the stack memory of a binary

program.

• Develop a model checking approach that allows verification of security properties related to

stack memory.

• Research the application of concolic execution to simulate C Library function calls and

Loops, in order to enhance the program model.

• Accurately detect stack buffer overflow vulnerabilities by modeling vulnerable behaviors

through security properties.

• Automatically patch detected vulnerabilities by rewriting the binary using a trampoline ap-

proach.

• Implement the developed approach into a tool and evaluate its performance and effective-

ness.

1.3 Contributions

Through the development of this dissertation, we made some relevant contributions to the field

of software security, through our research and development of model checking and concolic ex-

ecution methods for vulnerability discovery in binaries, and patching methods for the removal of

buffer overflows in binaries, we will now enumerate and further explain our contributions in detail:

1. Theoretical Stack Memory Model: We created a new theoretical model for the stack mem-

ory, that allows us to accurately track changes performed on the memory contents through-

out the execution of a program. This model introduces new memory transition operators, a

representation of program memory states, and a state transition system for the current state

of each byte on the stack. By doing so, we established a novel approach to map the exe-

cution of assembly instructions directly to operations that modify the stack, providing an

accurate reflection of the current state of the stack.

2. Stack Security Properties: To detect buffer overflow vulnerabilities, we created new op-

erators for LTL that permit the specification of properties about the stack memory of a

program. With these operators, we constructed LTL formulas that model the behavior of

typical buffer overflows. With these operators, we also provide a new way for researchers

to specify properties about the evolution of the stack memory throughout the execution of a

program.

3. Stack Emulation Approach based on Concolic Execution: We devised a new approach to

emulate the effects of function calls and loops in assembly code on stack memory. Utilizing

Chapter 1. Introduction 4

concolic execution, our method simulates the execution of these constructs and concretizes

the stack memory, allowing us to accurately calculate their impacts on the stack.

4. Novel Model Checking Approach: Building on our earlier contributions, we developed

a novel model checking approach for binary programs. This approach leverages our stack

memory model to construct a state space using memory operators. It then verifies security

properties against this state space, employing our LTL operators. This enables the confirma-

tion of the presence or absence of specific behaviors in the stack memory and the detection

of buffer overflow vulnerabilities.

5. Vulnerability Detection and Patch Validation Method: Utilizing our model checking

approach, we developed a novel method for detecting stack buffer overflow vulnerabilities

in binary programs by analyzing counter-example traces generated by the model checker.

Additionally, we designed a technique for patching these vulnerabilities and validating the

patches using inputs derived from the concolic execution process.

6. Open-Source Tool: We created a modifiable open-source tool named BASICS: Binary

Analysis and Stack Integrity Checker System 1, that implements our previous contributions.

This tool is capable of detecting and patching buffer overflows in small binary programs.

It allows users to specify custom security properties, custom mappings between properties

and CWE classes, and even custom patches, making it highly customizable for individual

research needs.

The work conducted for this dissertation led to the publication of our novel approach in the

paper titled ”On the Path to Buffer Overflow Discovery by Model Checking the Stack of Binary

Programs”, presented at the 19th International Conference on Evaluation of Novel Approaches to

Software Engineering [22].

1.4 Structure of the document

This thesis is organized into seven chapters, each detailing a different aspect of the research:

• Chapter 1: Introduces the reader to the problem, explaining the dangers of buffer overflow

vulnerabilities and proposing our solution to address this issue.

• Chapter 2: Defines relevant concepts in this problem area, such as vulnerabilities, model

checking, concolic execution, and binary programs.

• Chapter 3: Reviews relevant work previously developed in this field.

• Chapter 4: Presents the BASICS solution in detail and discusses the challenges involved in

implementing this approach.

1https://github.com/Singularitty/BASICS

https://github.com/Singularitty/BASICS

Chapter 1. Introduction 5

• Chapter 5: Details the implementation of BASICS, covering the challenges faced and design

choices for each module of the BASICS tool.

• Chapter 6: Presents the results obtained from evaluating BASICS with open-source appli-

cations and discusses their implications in detail.

• Chapter 7: Discusses the conclusions drawn from this dissertation, highlighting both posi-

tive and negative takeaways, and explores potential future work.

Chapter 2

Background

In this chapter, we will explore the theoretical concepts and technologies behind the research con-

ducted in this dissertation. We will start by discussing software vulnerabilities, with a particular

focus on buffer overflows, detailing their causes and potential impacts. Next, we will introduce

the concept of Model Checking, providing illustrative examples and an explanation of the for-

mal method. This will be followed by a brief overview of concolic execution. Finally, we will

discuss binary programs, specifically introducing the Angr Framework for their analysis and the

techniques employed for patching vulnerabilities.

2.1 Software Vulnerabilities

A software vulnerability can be described as a flaw in a program that compromises the program’s

security and usually of the host system [19]. A vulnerability in a program poses a problem due

to the possibility of exploitation by a malicious attacker. Most vulnerabilities start with code that

takes data from a third party (attack vector), such as user input or a data packet received over the

network.

The result of a bad input can cause a program to stray from the intended execution path,

resulting in unexpected behaviors and outcomes. While the most immediate effect might be a

program crash, a determined attacker can manipulate the weaknesses to execute arbitrary code, in

the form of shellcode, potentially granting the attacker unrestricted access to the host system [46].

These vulnerabilities might exist due to poor implementation logic by the developer, the ab-

sence of data validation, or the usage of vulnerable third-party libraries. The severity and exploita-

tion methods of these will vary, resulting in various categories, which include memory corruption,

input validation errors, race conditions, and more. A popular method of classification is through

the Common Weakness Enumeration (CWE) [1], which provides a comprehensive list of software

weaknesses. By categorizing these vulnerabilities, CWE aids developers and security profession-

als in identifying and mitigating potential security issues.

7

Chapter 2. Background 8

2.1.1 Buffer Overflow

Buffer Overflows have been identified as the most common and dangerous vulnerabilities to date

[15], these occur whenever a program fails to check the bounds of a buffer and allows a write op-

eration to a memory address outside this buffer. These overflows can happen in the heap, a region

of memory dedicated to dynamic allocations during runtime, or the stack, a region of memory

used to store local variables, function parameters, and function return addresses [46]. Due to the

nature of the data stored in the stack, overflows in this memory region, i.e. Stack Overflows, are

the most dangerous, since a program relies on the function return address, stored at the top of the

stack memory, to have the expected control flow the programmer intended.

Listing 2.1: Stack Overflow Example in C

1 void copy(char *str) {
2 char buffer_2[16];
3 strcpy(buffer_2, str);
4 }
5
6 void main() {
7 char buffer_1[256];
8
9 for (int i = 0; i < 255; i++) {
10 buffer_1[i] = 'x';
11 }
12 copy(buffer_1);
13 }

The code in Listing 2.1 demonstrates a standard example of a buffer overflow vulnerability. In

this code snippet, a 256-byte buffer (buffer 1, in line 7) is allocated and filled with the character

’x’. Subsequently, the copy function, in line 12, is invoked with buffer 1 as a parameter. This

function initializes a second, smaller buffer (buffer 2, in line 2 with a size of only 16

bytes and attempts to copy the contents of buffer 1 into it, by calling the strcpy function

from the C standard library. The strcpy function is considered dangerous, as it does not take

into account the size of the destination buffer when copying contents between buffers. Because

buffer 2 is not large enough to accommodate the data from buffer 1, this operation results

in a buffer overflow, where excess data spills over into the adjacent memory space.

By compiling the previous code to x86-64 Assembly, a low-level machine-language that the

Assembler translates into machine code for the process to execute, we gain the ability to analyze

the inner workings of the copy function and its interactions with memory.

The assembly code in Listing 2.2 demonstrates the setup of the stack frame of the copy func-

tion from Listing 2.1 and why it’s vulnerable to a buffer overflow vulnerability. Initially, the stack

base pointer (RBP) for the previous function is preserved on the stack with the instruction push

rbp, leaving the register RBP free to receive the current value of the stack pointer present in RSP,

denoted by the instruction mov rbp, rsp. Afterward, RSP is decreased by 32 bytes with sub

rsp, 32, allocating space for the local variables of the copy function in its stack frame. Within

Chapter 2. Background 9

Listing 2.2: Copy function’s x86-64 Assembly code

1 copy:
2 push rbp
3 mov rbp, rsp
4 sub rsp, 32
5 mov QWORD PTR [rbp-24], rdi
6 mov rdx, QWORD PTR [rbp-24]
7 lea rax, [rbp-16]
8 mov rsi, rdx
9 mov rdi, rax
10 call strcpy
11 nop
12 leave
13 ret

this space, an 8-byte pointer to buffer 1 is stored at the address RBP-24, and a separate 16-byte

space is allocated at RBP-16 for the contents of buffer 2.

When strcpy is invoked, it is instructed to copy data from the location pointed to by RDI

(which currently is buffer 1) to the space starting at address RBP-16 (start of buffer 2).

Since buffer 1 contains 256 bytes of data, it far exceeds the 16-byte capacity of buffer 2.

Consequently, the excess data from buffer 1 overflows and corrupts the adjacent memory space

beyond buffer 2. This is depicted in Figure 2.1, where the overflow overwrites other critical

data on the stack, such as the previously saved RBP. This kind of overflow can lead to the corrup-

tion of the stack frame and potentially alow an attacker to take control of the execution flow of the

program.

(High address)

(Low address)

Before

RBP 8 Bytes

buffer 2 16 Bytes

RDI

RSP-32

After

buffer 1
contents

overflow!

RDI

Figure 2.1: Stack buffer overflow of Listing 2.2

Chapter 2. Background 10

2.1.2 The Stack Region

The stack is a dynamic array of memory locations managed at runtime by the kernel, primarily

for storing data such as local variables and return addresses. In the x86-64 architecture, the stack

pointer register, i.e. RSP, indicates the current top of the stack. When data is pushed onto the

stack with push instruction, the CPU first decrements RSP to make room in the stack, then

writes the new item at this updated location. Conversely, the pop instruction removes an item

by reading from the current top of the stack and then incrementing RSP. This design means the

stack expands downwards to lower memory addresses as items are added, and contracts upwards

to higher addresses as items are removed.

The stack is organized into logical sections called stack frames, which are allocated when a

function is called and deallocated upon return. Each frame is composed of four key regions [16]

(see Figure 2.2)

• Arguments: This region holds the current function’s arguments, which are pushed onto the

stack in reverse order, ensuring the first argument is at the top and easily accessible.

• Return Address: The return address is the point to which the caller function will return after

execution of the callee function. This address, corresponding to the instruction following

the call in the previous function, is pushed onto the stack before transferring control to the

callee function.

• Previous Frame Pointer: This contains the base pointer (RBP) from the caller’s stack

frame, allowing the called function to reference its caller’s frame.

• Local Variables: Finally, there is a designated area for the function’s local variables. The

compiler determines the layout and size of this region based on the program’s needs.

Arguments

Return Address
Caller’s RBP

Base
Frame
Pointer

Local Variables

Top of Stack

Stack grows

Figure 2.2: Stack Frame layout

The most critical threat posed by a stack overflow is the potential overwrite of the caller’s

RBO and, crucially, the return address. The integrity of the return address is vital, as it dictates

where the program’s execution should continue after a call. If an overflow allows this address to

be overwritten, an attacker can redirect the program’s execution flow, possibly to execute arbitrary,

and potentially malicious code.

Chapter 2. Background 11

2.2 Model Checking

Model Checking is a computational technique used to analyze the behaviors of dynamic systems,

which are represented as state-transition systems [13], This method is extensively utilized in the

verification of both hardware and software within the industry. When exhaustive verification of

the actual software is infeasible, a simplified model that encapsulates its fundamental design can

be created. This model retains the system’s essential properties while sidestepping complexities

that hinder full-scale verification. Thus, model checking allows for the verification of a system’s

design when its complete implementation is too complex to verify directly.

According to [13], a model checker is composed of three main components:

• Model: A finite state-transition graph that provides adequate formalism for the description

of the system, generally designated as a Kripke Structure.

• Specification: The system’s desired properties are expressed as temporal logic, which pro-

vides a framework for specifying the correctness criteria of state transitions.

• Algorithm: A computational method used to ascertain if the state-transition model follows

the specifications outlined in the temporal logic formulae.

Together, these components facilitate the model checking process. The system is abstracted

into a state-transition graph, known as a Kripke Structure, denoted as K. The specifications of

the system’s behavior are formulated as temporal logic formulas φ. The model checker employs

a decision procedure to determine whether K |= φ hold, i.e. if the Kripke Structure K satisfies

the property φ. Should the K not satisfy φ (expressed as K ̸|= φ), the model checker provides a

counter-example, demonstrating how the security property φ is violated within the structure K.

Model Checking Example

To illustrate the practicality and efficacy of model checking, let’s consider an example imple-

mented in Promela, a verification modeling language specifically designed to analyze concurrent

systems, and used with the SPIN model checker [27] to simulate and verify the correctness of

system designs. The code in Listing 2.3 models a simple system with two concurrent processes,

A and B, aiming to enter their respective critical sections while avoiding simultaneous execution

that could lead to conflicts. Before entering the critical section, each process sets its corresponding

flag to true and then checks the other processes’s flag to ensure it is not in its critical section. This

check acts as a mutual exclusion mechanism to prevent both processes from simultaneously being

in their critical sections. After executing the critical section, indicated by a print statement, the

process resets its flag to false, allowing the other process to enter its critical section.

A state for this program will be the set of values for the flags together with the location counter

which indicates the position in the execution of each process.

State = {locA = n1, flagA = bool, locB = n2, flagB = bool}

Chapter 2. Background 12

Listing 2.3: Critical Section problem modeled with Promela

1 bool flagA = false, flagB = false;
2
3 active proctype A() {
4 do::
5 printf("Non critical section A\n");
6 flagA = true;
7 !flagB;
8 printf("Critical section A\n");
9 flagA = false
10 od
11 }
12
13 active proctype B() {
14 do::
15 printf("Non critical section B\n");
16 flagB = true;
17 !flagA;
18 printf("Critical section B\n");
19 flagB = false
20 od
21 }

With a mathematical definition for a program state, we can construct a state transition graph, a

graphical representation of the possible execution traces of the program. Each node in this graph

corresponds to a reachable state of the program, and the edges represent transitions between these

states triggered by the execution of instructions within the processes.

Constructing this state transition graph enables the verification of crucial security properties

within our concurrent system, such as mutual exclusion. Mutual exclusion ensures that no two

processes access their critical sections simultaneously. To verify this property, we examine if the

system can ever reach a state where both processes are in their critical sections, such a conflicting

state would be represented as {9, F, 19, F}, where both processes A and B are in their critical

sections simultaneously with both flags set to F. By examining the diagram in Figure 2.3, it is

possible to observe that such state is never reachable.

For real-world systems, it is unlikely that the state transition graph can be manually examined.

So to check if the system possesses the desired properties, one must use a model checker and

specify such properties as temporal logic formulas. For our context, we could use the SPIN model

checker to verify if mutual exclusion holds by checking if the following Linear Temporal Logic

(LTL) formula holds in every computation:

□¬(locA = 9 ∧ locB = 19)

This LTL formula asserts that it is always true that the program counters for processes A and

B are never simultaneously at locations 9 and 19, respectively. These locations correspond to the

critical sections of both processes. The SPIN model checker can then check this formula against

Chapter 2. Background 13

{6, F, 16, F}start

{6, F, 17, T}

{6, F, 19, T}

{7, T, 19, T}

{7, T, 16, F}

{7, T, 17, T}

{9, T, 16, F} {9, T, 17, T}

Figure 2.3: State Transition Graph for the system modeled in Listing 2.3

our specified Promela model to verify if mutual exclusion holds in every possible computation,

returning a counter-example trace if it does not hold.

2.2.1 Linear Temporal Logic

Temporal logic is used to reason about the way the world changes over time. In the context of

software, it is used in the specification and descriptions of systems by describing the evolution of

states of a program which gives rise to descriptions of executions. There are different types of

temporal logics, depending on their perspective on the progression of time, the two main ones are

linear and branching [13].

In the linear perspective, time is seen as a sequence of distinct moments, with each system

execution represented as a series of states. When a system has multiple possible execution paths,

it is viewed as separate possible execution traces and the system has a set of possible behaviors.

Proposition Linear Temporal Logic (LTL) as the name implies, follows the linear-time view.

In addition to the operators present in proposition logic, this logic provides temporal operators that

connect different stages of the computations and talk about dependencies and relations between

Chapter 2. Background 14

them. LTL formulas are constructed using normal Boolean operators (¬, ∨, ∧) and the temporal

operators next, previous, until and since [13].

• ⃝φ (Next): Refers to the immediate subsequent state in a computation.

• ⊖φ (Previous): Points to the immediately preceding state.

• φ1Uφ2 (Until): Describes a condition that must hold until another condition becomes true.

• φ1Sφ2 (Since): Indicates that its first operand holds at all points in the past until some past

point where its second operand holds

These operators can then be used to define temporal abbreviations which are the most com-

monly used operators in LTL formulae:

• ♢φ (eventually): This operator is used to specify that a certain condition is expected to be

true at some point in the future. It asserts that there exists a future state in the execution

where the condition holds.

• □ψ (always): This operator signifies that a condition must hold in all states of execution. It

is used to express invariance.

• φWψ (Weak-Until): Asserts that a certain condition must hold up until another condition

becomes true. However, unlike U , it does not require that the second condition ever be-

comes true, allowing the first condition to remain true indefinitely.

• φRψ (Release): Similarly to U , this operator asserts that a condition must hold until, and

including to the point where the second condition becomes true. However, if the second

condition is never found to be true then the first must hold forever.

2.2.2 ω-automaton

Before defining what a ω-automaton is, we must first define what an automaton is. These can be

described as a model of a machine that responds to a predetermined sequence of inputs. There are

several types of automaton, the simplest being a finite state automaton [49] which can be defined

as follows [27].

Definition 2.1 (Finite State Automaton). A finite state automaton (FSA) is a tuple (S, S0, L, T , F)
that consists of the following components:

• S is a finite set of states.

• S0 is a initial state, such that S0 ∈ S.

• L is a finite set of labels.

• T is a set of transition, such that T ⊆ (S × L× S).

Chapter 2. Background 15

• F is a set of final states, such that F ⊆ S.

A run for an FSA will then be an ordered, and possibly infinite, set of transitions, e.g.,

{(s0, l0, s1), (s1, l1, s2), ...}. These runs can further be considered as accepting runs, if it ter-

minates in a final state of the automaton, i.e., the final transition of the run leads to a final state.

S0start S1 S2

t0

t1 t3

t2

Figure 2.4: Finite State Automaton

An example of an FSA is illustrated in Figure 2.4, in this automaton, S0 is the initial state and

S2 is the final state. A valid accepting run would be, for example, {(S0, t1, S1), (S1, t3, S2)}.
An ω-automaton is a variation of an FSA that takes infinite strings as input, and instead of

having a set of accepting states, it has a variety of acceptance conditions. An infinite run in this

type of automaton is called ω-run, for these to be accepting runs there must exist some final state

that is visited infinitely often in the run. Any finite run can be extended to an infinite ω-run,

through a stuttering rule. This rule consists of adding a no-op operation that is always executable

and has no effect.

There are several classes of ω-automata with different accepting conditions, including Büchi,

Rabin, Streett, parity, and Muller automata, each of these can be deterministic or non-deterministic.

These types of automata can be particularly useful for Linear Temporal Logic Model Checking

since LTL formulas can be translated to ω-automata. This translation allows the Model Checking

problem to be formalized as follows.

1. Translate the LTL formula into a ω-automaton B;

2. Compute the interleaving product A of the FSA representing the space state;

3. Compute the synchronous product P of A×B;

4. Search for accepting runs of the automaton P , using the corresponding ω-automaton ac-

cepting rule.

The SPIN model checker utilizes the algorithms described in [24, 20] to convert LTL formulas

to Büchi automata. An example of this process can be explored by translating the LTL formula

♢□p to a Büchi automaton, this can be performed utilizing any of the algorithms in [24, 20, 23].

The result is the automaton in Figure 2.5

2.2.3 Satisfiability Modulo Theories

The Boolean Satisfiability Problem (SAT) is a problem in computer science that involves deter-

mining whether a given propositional formula, such as (x∨y), can be satisfied. This means finding

Chapter 2. Background 16

S0start S1

true

p

p

Figure 2.5: Büchi Automaton for ♢□p

a variable assignment that makes the formula evaluate to true. Programs designed to solve these

problems are known as SAT solvers, and they output whether a formula is satisfiable or not.

Satisfiability Modulo theories (SMT) are a generalization of boolean satisfiability (SAT) to

more complex formulas by adding equality reasoning, arithmetic, and other first-order theories.

These problems can be viewed as the problem of determining whether a mathematical formula is

satisfiable or not, and the programs that solve these are called SMT Solvers.

These solvers are integral to some formal techniques in computer science, such as Symbolic

Execution and Bounded Model Checking. These usually involve gathering constraints in the form

of Boolean formulas or mathematical formulas, which are then solved using an SMT Solver. One

popular SMT Solver is z3 [14], which was developed by Microsoft and is incorporated into many

tools such as the verification-aware Dafny programming language [35] and the binary analysis

framework Angr [59].

2.3 Concolic Execution

Concolic Execution is a method that combines both symbolic and concrete execution, meaning

that symbolic values and concrete values are used for inputs and the program is both executed

concretely and symbolically. The concrete execution part of concolic execution constitutes the

normal execution of the program, while the symbolic execution one collects symbolic constraints

over the symbolic input values at each branch point encountered along the concrete execution path

[55].

The process starts with executing the program on a set of initial inputs. As the program runs,

it collects constraints on the inputs from conditional statements encountered along the execution

path. These constraints are then used to generate a symbolic representation of the program’s

execution, capturing the relationships between inputs and the program’s behavior. To solve these

constraints and determine if a path is executable SMT Solvers are used.

2.4 Binary Programs

For a typical program written in the C programming language to be executed, it must first be

translated into a format that the CPU can execute. This translation is done through a process

known as compilation. Compiling a C program involves several steps: preprocessing, compiling,

assembling, and linking. It is a complex procedure that results in an executable binary file where

most of the information from the source code is stripped away. This stripping of information is

Chapter 2. Background 17

one of the factors that makes vulnerability discovery in binary programs challenging.

Depending on the target operating system, the format of the binary will change, with the

two most common formats being Executable and Linkable Format (ELF) for Linux and Portable

Executable (PE) for Windows [2].

2.4.1 Angr Framework

Angr [59] is an open-source binary analysis platform for Python, it provides an extensive toolkit

to address a wide range of binary analysis tasks, such as symbolic execution, concolic analy-

sis, and binary instrumentation for a variety of different architectures, including x86, ARM, and

MIPS, among others. Due to its development being primarily in Python, it offers a flexible and

approachable platform for analyzing binaries.

The initial step in Angr’s analysis process involves disassembling the binary. Disassembly, the

task of translating binary code back into assembly instructions, is inherently challenging due to the

loss of some high-level information during the original assembly process. Angr tackles this chal-

lenge by employing a recursive disassembly strategy, striving for the most accurate reconstruction

of the assembly code. Post-disassembly, Angr leverages the Capstone disassembly framework to

provide a detailed programming interface to each assembly instruction, facilitating deeper analysis

[47].

One of Angr’s most powerful features is the Simulation Manager, this tool allows one to con-

trol and manage the exploration of execution paths in a binary. In a Simulation Manager, states are

organized into stashes, which can be stepped forward, filtered, merged, or moved around as the

user wishes. Through the use of stashes, custom exploration techniques can be used to categorize

and find specified states (e.g. a state that reaches a certain address), while pruning all states that

do not meet the desired requirements.

Additionally, Angr includes a built-in analysis functionality to construct a control flow graph

(CFG) of a binary program. The CFG is a graphical representation where nodes are basic blocks,

and contiguous sets of assembly instructions, and edges represent control flow transitions like

jumps, calls, and returns.

2.4.2 Binary Patching

Binary patching is the process of altering a binary file with the intent of removing critical security

issues. As software grows in complexity and more vulnerabilities are uncovered, the need for

effective binary patching has become increasingly pronounced. These vulnerabilities may remain

unaddressed for extended periods, as the vendor cannot provide a fix, or the software in question is

legacy and no longer supported [28]. In these cases, binary patching emerges as a crucial interven-

tion method. It allows for direct modifications to the executable code of the software, bypassing

the need for source code access. This approach is especially vital when conventional patching

methods are not feasible, making it an indispensable tool for maintaining software security. By

applying binary patches, vulnerabilities can be remediated, thus safeguarding the software against

Chapter 2. Background 18

potential exploits and breaches.

One effective approach to binary patching involves using a trampoline mechanism to redirect

a program’s control flow, a method employed by Diogo Ferreira [21] to address buffer overflow

vulnerabilities in binary files. To achieve this, templates are created for supported vulnerable

function calls, these templates are small pre-compiled C applications. These templates are then

added to the binary through the replacement of the vulnerable call by an e9 jump instruction,

this instruction redirects the control flow of the program to a trampoline which consists of the

patch followed by a jump instruction that redirects the control flow once again back to the main

application. This is exemplified in Figure 2.6.

Instruction 1

e9 jump

Instruction 2

...

Patch

Jump

Figure 2.6: Simplified example of the trampoline method. Program control flow follows the arrows

Chapter 3

Related Work

In this chapter, we will provide an overview of the current works and techniques in the research

areas of vulnerability discovery, model checking in software security, and code repair. We will

specifically focus on applications in both source code and binary code contexts for each research

area. This review will highlight the state-of-the-art approaches, and discuss their strengths and

limitations

3.1 Vulnerability Discovery Techniques

Detecting software vulnerabilities is a long-standing and well-researched problem in the area of

security. Most of this research is targeted at discovering vulnerabilities in source code, most

commonly in mainstream languages such as C/C++, PHP, Java, and Python. Only a smaller,

although still significant, portion of this research is aimed at binary programs.

This body of research utilizes a plethora of methods and techniques, such as static and dynamic

analysis, and machine learning. Several survey studies have been conducted on the published

state-of-the-art techniques and popular available tools, such as [32], where the authors performed

a comparative study of static analysis tools for C/C++ and Java code, highlighting classes of

vulnerabilities that remained undetected by these tools. For machine learning approaches, [58]

summarized the current research landscape of the techniques focused on source code, identifying

the most commonly used datasets to train the ML models.

3.1.1 Detecting Vulnerabilities in Source Code

For the C language, CorCA [30], combined static and dynamic analysis to detect buffer overflows

in C source code, the detection method involves identifying code slices with potential vulnerabili-

ties, compiling them, and performing fuzzing. For PHP, [3] identifies vulnerabilities by performing

graph traversals on code property graphs of PHP applications. Recent research has increasingly

focused on utilizing machine learning techniques to detect vulnerabilities. Most commonly, these

works [5, 51, 25], either train models to detect vulnerabilities, directly on the lexed sourced code

or create embeddings from the source code. One particular work [40], utilizes natural language

processing to discover and identify vulnerabilities in PHP source code.

19

Chapter 3. Related Work 20

3.1.2 Vulnerability Discovery in Binary Programs

The detection of vulnerabilities in binary code is a far more challenging problem, due to the loss of

information that occurs during the compilation process of source code to machine language. De-

spite this, there are been some significant contributions to this field, Arbiter [61], combined both

static and dynamic analysis in its approach, allowing for the detection of multiple classes of vul-

nerabilities. Vyper [6], another example capable of multiclass vulnerability detecting, leverages

concolic execution and analyzes sensitive memory zones. To detect Integer Overflows, IntScope

[63] converts the disassembled code to an IR (Intermediate Representation) and performs taint

analysis and symbolic execution, and [67] utilizes pattern matching, and dynamic symbolic ex-

ecution (DSE). Additionally, machine learning techniques have also been leveraged to discover

vulnerabilities in binaries. For example. VulkHawk [38] and [52], created embeddings of the dis-

assembled code, and trained language processing models with these embeddings to detect multiple

classes of vulnerabilities.

3.1.3 Fuzzing

Fuzzing is one of the most popular methods to discover vulnerabilities in software, it consists of

generating test cases for an application, generally abnormal stochastic inputs, with the intent to

cause a program crash and detect potential bugs. The study [36], compiled recent advances in

fuzzing solutions, going in-depth at covering coverage-based fuzzing techniques, and discussing

the usage of static analysis, symbolic execution, and machine learning to improve the fuzzing

process. One particular work of interest [55], presented a novel test case generation method,

called grey-box concolic testing. This method leverages lightweight instrumentation to generate

high-coverage test cases high-coverage test cases for binary programs. The authors evaluated their

solution against state-of-the-art fuzzers, such as AFLFAST [8] and LAF-intel [34], finding that it

excels in terms of both code coverage and bug finding.

3.2 Model Checking in Software Security

Model Checking is a formal method traditionally used to model and study software and hardware

behavior, generally focusing on verifying the existence of certain functionalities or the absence

of unwanted behavior such as deadlocks. There are several model checking approaches, the two

most common being explicit state-based and constraint-based model checking, commonly known

as Bounded Model Checking (BMC).

The direct application of this formal method for discovering vulnerabilities is not often found

in literature, but some works delving into this application exist. For web security, [29] utilized

BMC to verify the source code of web applications, and in systems security, [54] model checked

an entire Linux distribution to find exploitable bugs.

Chapter 3. Related Work 21

3.2.1 Formal Verification of C programs

Some works in literature present tools to verify C source code, some of the most notable will are

highlighted here. MOPS [10], was presented as a tool to verify security properties in C software.

The authors model the target program for verification as a pushdown automaton and represent se-

curity properties as finite state automata. These are then verified against the model of the program

by utilizing explicit state model checking techniques, to determine the reachability of risky states

in the pushdown automaton. By utilizing this formal method, MOPS is not only capable of deter-

mining the presence of vulnerabilities but also verifying their absence in the program. The tool

was later utilized in a different work [9], to model check UNIX applications and discover security

flaws, model checking over a million lines of C code in the process.

CBMC [12], was presented as a tool that utilized BMC to formally verify ANSI-C programs.

It allows for the verification of memory safety, which includes array bounds checks and safe

usage of pointers, and it also allows verification of exceptions and user-defined assertions. The

authors reduced the Model Checking problem to determining the validity of a bit vector equation,

this is accomplished by closely unwinding all loop constructs and backward goto statements, and

expanding function calls, transforming the program into a static single assignment (SSA) form.

The result produces two bit-vector equations, one for the constraints (C) and another one for the

properties (P). To verify a property, the equation (C ∧¬P) is converted into Conjunctive Normal

Form (CNF) and passed to a SAT solver, and if the equation is satisfiable, the property is found to

be violated, otherwise, it is found to hold.

3.2.2 Model Checking Binaries

Although not commonly used in binary code due to the state explosion problem [62], model check-

ing has been used to detect malware behaviors, and validate micro-controller code [41, 50, 53].

To detect malicious behaviors in binaries, [44], proposed SPCARET a new temporal logic, to

model malicious behaviors and an efficient algorithm to model check SPCARET formulas against

Pushdown Systems. To model binary programs, the authors utilize Pushdown Systems adapting

them to their needs by keeping track of call and return actions in each path, naming this model

Labelled Pushdown Systems. Malicious behaviors are then specified as SPCARET formulas, an

extension of the linear temporal logic of CAlls and RETurns (CARET), these behaviors include,

Opening and listening to a specific port, and Registry Key Injection.

More related to vulnerability discovery, the framework HeapHopper[18], analyzes the ex-

ploitability of different heap implementations, by leveraging BMC and symbolic execution. HeapHop-

per works by finding sequences of transitions performed in the program that make the constructed

model of the heap implementation reach states that invalidate specific security properties. The

researchers defined the transitions as operations that can modify the heap, either directly or indi-

rectly, considering the following as possible heap operations: malloc, free, overflow, use-after-free,

double-free, and fake-free. Sequences of transitions are then created and checked against the heap

model, by using the Angr framework as a symbolic execution engine. If a violation is found,

Chapter 3. Related Work 22

HeapHopper outputs a proof-of-concept code that can be used to study the security violation.

3.3 Code Repair

Detecting vulnerabilities is one of the most researched topics in software security, leading to the

report of many zero-day vulnerabilities in software. To address these developers must be able and

willing to fix the reported vulnerabilities, which is often a time-consuming task. Addressing this,

automated code repair aims, to fix vulnerabilities without human intervention [66].

To categorize existing repair techniques, Monperrus [42] contributed a comprehensive survey

categorizing these into two principal classes: behavior-based and state-based. Behavior-based

techniques primarily focus on modifying the source or binary code to alter a program’s operational

behavior. In contrast, state-based approaches involve changing the program’s state during runtime,

such as altering the input, stack memory, or heap memory. Complementing this categorization,

Pinconshi et al. [48] compared several state-of-the-art techniques, assessing their effectiveness.

The author’s findings suggest a higher efficacy in techniques that either employ brute-force search

strategies or execute functionality deletion in a brute-force manner.

3.3.1 Source Code Repair

Tackling the repair of C source code, CorCA [30] identifies and extracts program slices classi-

fied as vulnerable, and substitutes C-library function calls susceptible to vulnerabilities with safer

counterparts. Additionally, it refines this process by appropriately adjusting the arguments passed

to these functions.

Recently other works have developed code language models for code repair, Jiang et al. [31]

evaluated these models, and showed that fine-tuned CLMs significantly outperform traditional

techniques in bug fixing and efficiency.

3.3.2 Binary Patching

For binary programs, the problem of automatic repair is more challenging than in source code,

with most tools and methods relying on heuristic-based recovery of control flow information from

binaries, which tend to scale poorly. Addressing this issue, E9Patch [17] was presented as a tool

adept at statically rewriting x86-64 binaries. It utilizes a range of control flow-agnostic rewriting

techniques, including instructing punning, padding, and eviction. A feature of this tool is the

ability to insert jumps to trampolines without the need to relocate other instructions within the

binary, thereby improving its ability to handle large binary files efficiently.

Chapter 4

BASICS Solution

In this chapter, we introduce our proposed solution, BASICS: Binary Analysis and Stack Integrity

Checker System. We will begin by outlining the key challenges we encountered during the design

of BASICS. Following this, we will present the overall architecture of BASICS, providing a com-

prehensive overview of its components. Finally, we will go into the details of each module that

constitutes BASICS, explaining their roles, functionalities, and how they work together to achieve

the desired outcomes.

4.1 Challenges

Developing a scalable and precise tool using formal methods to detect buffer overflow vulnera-

bilities in x86-64 binaries presents significant challenges. The transition from theory to practical

implementation is complete with numerous potential pitfalls and obstacles. To provide context for

our proposed solution, we will first discuss the challenges involved.

4.1.1 Performing Model Checking on x86-64 binaries

Applying model checking techniques to binaries presents significant challenges, primarily due

to the state explosion problem. The vast amount of information required to track and the large

number of branches present in compiled code can cause the state space to grow exponentially, and

consume excessive memory resources. This large state space also leads to a potentially lengthy

model checking process.

To mitigate this issue, we designed a simple model that will serve as the basis for constructing

the state space, keeping the number of transition operators small, to avoid creating too many states,

and using a memory-efficient implementation.

Another critical issue is the problem of disassembly. Current disassembly techniques are im-

perfect, meaning that the disassembled code may not accurately represent the assembly code gen-

erated by the compiler. This issue is generally less severe for smaller to medium-sized binaries.

However, for larger binaries that have been stripped to prevent reverse engineering, disassembly

becomes extremely difficult, if not impossible.

23

Chapter 4. BASICS Solution 24

Due to these considerations, we opted for a disassembling solution that utilizes a recursive

disassembly algorithm rather than a linear one. This algorithm significantly improves disassembly

accuracy and handles obfuscated binaries more effectively. However, we decided not to support

stripped binaries, as they lack the necessary information for our approach to function properly.

4.1.2 Detecting Vulnerabilities through Model Checking

Detecting vulnerabilities through model checking requires careful consideration of two key as-

pects. First, the model of the system must be sufficiently detailed to represent potential malicious

traces. Second, the properties verified against this model must ensure that there are no possible

traces leading to these malicious states, meaning that when one such trace is detected, a potential

vulnerability might be present in the program.

The challenges associated with these considerations include determining the appropriate level

of detail for the model. If the model is not accurate enough, there is a risk of failing to detect

vulnerabilities. Conversely, if the model is too detailed, it may lead to a state explosion problem.

For the security properties, the challenge lies in modeling the vulnerability behaviors using tem-

poral logic, which may involve creating custom operators and functions to accurately detect these

vulnerabilities. To address this challenge, we constructed a memory model from the ground up to

accurately represent the state of bytes in the stack memory of a binary. We developed operators

for LTL to address individual bytes. This approach provides a balance between the accuracy and

complexity of the model.

4.1.3 Performing Concolic Execution on Binary Code

One significant technical challenge addressed in this dissertation was the application of concolic

execution techniques to binary code, particularly to emulate the effects of function calls. Unlike

source code, binary code lacks the high-level information and abstractions that facilitate straight-

forward symbolic analysis. To extract detailed information regarding changes to the stack, we

needed a method to accurately calculate the modifications made by function calls.

To achieve this, we explored existing solutions and selected Angr’s symbolic execution engine.

This choice allowed us to set hooks on states containing function calls and emulate these calls,

thereby obtaining a concrete representation of the stack’s state after emulation.

4.1.4 Patching Vulnerabilities in Binary Programs

The final challenge we faced was the removal of detected vulnerabilities in binary programs. Un-

like source code, we cannot simply rewrite the binary with corrected assembly instructions. In-

stead, we must consider aspects such as instruction addresses, library linking, and other low-level

details to successfully modify the binary. There are several existing tools available for this task,

each with different requirements and approaches.

After a thorough evaluation of these solutions, we selected E9Path [17], which met our specific

needs. E9Path facilitates effective binary patching through the use of the trampoline approach.

Chapter 4. BASICS Solution 25

This method allows us to create patch templates that can address vulnerabilities on an individual

basis, ensuring that the patches are applied correctly and consistently across different binaries.

4.2 BASICS a Model Checker for x86-64 Binaries

BASICS is the solution proposed by this dissertation. It aims to find and repair stack buffer

overflow vulnerabilities in binary programs. To find the vulnerabilities, we propose the usage

of model checking to verify security properties of the program stack memory, these properties

model the correct usage of the stack memory space, and a violation of these would account for a

potential vulnerability, besides detecting vulnerabilities the model checker would also allow the

verification of user-defined security properties via Linear Temporal Logic formulas, allowing to

verify any other desired property of the stack memory.

To verify the specified security properties, we construct a theoretical model of the stack mem-

ory to generate a state space of the program’s stack. This state space is initially generated based

on memory write operations, identified through defined transition operators. The state space is

then further refined using concolic execution to emulate function calls and loops, which further

increases its accuracy. Upon completion of this construction, the model checker conducts a com-

prehensive search within the state space to identify any traces that violate the specified properties.

At the end of the model checking process, a report is emitted, if all security properties are

found to hold a document with the verified properties is emitted. If at least one security property

is found to be violated, documents with the violated properties, respective counter-example traces,

and concolic inputs are emitted. For the latter case, the binary then undergoes a repair phase if the

violated properties are found to correspond to a fixable known vulnerability.

To repair any detected stack buffer overflow vulnerabilities we propose the usage of a tram-

poline to patch the binary, redirecting the control flow of the binary program through a jump

instruction to a patch template containing the correct code and avoiding the vulnerable instruc-

tions.

After repairing the detected vulnerabilities, we propose verifying the correctness of the patched

binary by testing it with inputs extracted from the concolic execution process. These inputs, which

lead to the violation of security properties, are considered malicious. By testing both the original

and the patched binaries, we can determine the effectiveness of the patch in fixing vulnerabilities

that cause program crashes.

Figure 4.1 provides an overview of BASICS’s architecture, which is composed of the following

integral modules:

1. Binary Data Extractor

2. Model Checker

3. Security Property Converter

4. Vulnerability Patcher and Validator

Chapter 4. BASICS Solution 26

Detailed descriptions of each module are provided in the subsequent subsections.

Disassembler Stack Memory
State Space
Constructor

Model Checker

Exhaustive Space
State Searcher

Vulnerability
IdentifierBinary Patcher

Vulnerability Patcher and Validator

Binary

User Function
Extractor

Control Flow
Graph Generator

Linear Temporal
Logic (LTL)

Formulas

 Binary Data Extractor

Transition
Operators

Patched
Binary

Security Property
Converter

LTL to Omega
Automata
Translator

Concolic
Execution

Report

Violation of Safety
Properties

Properties
Violated

Vulnerabilities
Detected

Patch
Success
Report

Patched
Binary

Refined
State
Space

Omega
Automata

Assembly
Code

User
Functions

Control
Flow
Graph

No Patch Performed

Properties
Verified

Vulnerability
Database

Patch
Templates

Concolic
Inputs

Patch Validator

All Safety
Properties Hold

Vulnerability Patching
Report

Counter-
Example
Traces

Figure 4.1: Architecture for BASICS

4.2.1 Binary Data Extractor

The Binary Data Extractor module begins by taking a binary program and disassembling it through

a recursive disassembly process. This approach is chosen for its enhanced accuracy in extracting

x86-64 assembly code. Once the code is obtained, the module performs two critical analyses:

• Control Flow Graph Extraction: This analysis involves the extraction of a control flow

graph from the program. The information obtained from this process is essential for con-

structing the program’s state space, which is crucial for subsequent modules in the architec-

ture.

• Function Identification: This second analysis is focused on pinpointing all user-defined

functions within the code. It extracts vital details such as the names and addresses of these

functions.

Chapter 4. BASICS Solution 27

4.2.2 Security Property Converter

The Security Property Converter module functions as an interface within our architecture, facili-

tating the specification of additional security properties by users. These properties are crucial for

the verification of a given binary, especially for customized security needs. Here is a description

of how the module operates:

• LTL Formula Database: This database stores the user-specified security properties formu-

lated as Linear Temporal Logic (LTL) formulas. It also includes predefined properties that

specifically model stack buffer overflow vulnerabilities, and are crucial for detecting these

types of vulnerabilities.

• Omega Automata Constructor: This component is essential for translating the LTL for-

mulas into Omega Automata. The translation is a prerequisite step before the Model Checker

can verify the properties against a given memory state space.

• Omega Automata: After conversion, the LTL formulas, now in the form of Omega Au-

tomata, are stored here. These automata are then forwarded to the Model Checker module,

where they undergo a verification process to determine if they hold for the analyzed pro-

gram.

4.2.3 Model Checker

This component plays a crucial step in the proposed solution, it is in charge of creating the state

space for the program, performing the model checking process, and verifying security properties

of the program stack memory, to do this it operates in several key stages:

• Stack Memory State Space Constructor: Initially, the module constructs a state space

model. This is achieved by utilizing a database of transition operators, which defines which

assembly instructions can change the state of the stack memory within the program. The

module iterates through the basic blocks of the previously generated CFG and matches each

assembly instruction in the block to the defined memory operators.

• Concolic Execution: During the creation of the state space, concolic execution is used to

emulate C standard library function calls and loops, simulating their effects on the program

stack memory. These changes are then reflected in the stack memory state. This technique

combines concrete and symbolic execution to obtain symbolic constraints on the stack and

concrete values when possible. This approach increases the precision of the state space and

ensures a more accurate representation of the program’s behavior.

• Exhaustive State Space Searcher: The final stage involves verifying security properties,

which are represented by omega automata. This module conducts an exhaustive search of

the product of the state space and the omega automaton to determine whether each branch of

the program’s possible execution traces ends in an accepting state of the omega automaton.

Chapter 4. BASICS Solution 28

If a branch ends in a non-accepting state, that trace violates the property and is emitted as

a counter-example trace for that specific property. This process is essential to ensure that

the program aligns with predefined security standards and is free from certain classes of

vulnerabilities.

Following the completion of the model checking process, the Model Checker module gener-

ates a detailed report. The contents of this report vary depending on the outcomes of the verifica-

tion process and the status of the binary program. The scenarios and corresponding outputs are as

follows:

1. Violation of Security Properties: If any security property is found to be violated, the report

includes:

• A document listing the violated properties

• A document detailing counter-example traces, which depict the sequence of operations

leading to an invalid state in the stack.

• A document containing the concretized inputs obtained during the simulation of stdin

functions from the C standard library.

2. All Properties Verified: If all security properties are verified, the report contains:

• A document enumerating the verified properties.

4.2.4 Vulnerability Patcher and Validator

When at least one security property is found to be violated in the program’s memory state space,

the binary is automatically forwarded to the Vulnerability Patcher and Validator module for further

processing. This module is divided into three primary components:

• Vulnerability Identifier: The first step in addressing vulnerabilities is pinpointing their ex-

act source within the binary code. This process involves a two-phase approach. Initially,

the type of vulnerability is determined by correlating the violated security properties with

entries in a vulnerability database. Subsequently, a reverse-flow analysis of the counter-

example traces is conducted to locate the precise position of the vulnerable C standard li-

brary call in the program’s code that led to the vulnerability.

• Binary Patcher: Once the type and location of the vulnerability are identified, this com-

ponent modifies a copy of the original binary. It employs a trampoline mechanism, which

redirects the program’s control flow to a patch template designed to circumvent the identified

faulty behavior. To ensure effective patching, a variety of patch templates, each tailored to

specific unsafe C standard library functions, are maintained in a database. Users can expand

the range of functions that can be patched by adding additional patches to this database,

which the patcher will automatically utilize.

Chapter 4. BASICS Solution 29

• Patch Validator: Once the patching process is complete, the resulting binary is tested

alongside the original binary to verify if any buffer overflow-induced crashes were cor-

rected. To test the binaries, we use inputs generated during the state space creation by the

concolic execution process. These inputs, which can lead to invalid states and expose vul-

nerabilities, are considered malicious. If the original binary crashes with these inputs, but

the patched version does not, the patch is considered successful.

Once the patching process is complete, the revised binary is returned along with a patch suc-

cess report. This report contains the inputs used to test the binaries, the results of executing those

binaries, and a list of potential vulnerabilities detected in the original binary.

Chapter 5

BASICS Design and Implementation

In this chapter, we will discuss the design and implementation of BASICS. We will begin by

exploring some of the design choices made for the approach, followed by a detailed explanation

of how each module works and was implemented. Additionally, we will address the specific

challenges encountered during the implementation of each module.

5.1 Framework Choices

Before starting the implementation of the proposed solution, several key decisions had to be made.

Primarily, we needed to choose an appropriate disassembling platform and decide whether to use

an existing model checker or to build our model checking solution.

5.1.1 Angr Framework

Starting with the most important choice, the backbone of our implementation: we decided to

utilize the Angr Framework [59] as our disassembling platform. Angr is a binary analysis frame-

work for the Python programming language that uses the Capstone disassembler as a backend to

disassemble binaries.

We chose this platform due to its modularity and ease of integration with Python code, as well

as its built-in powerful features, such as concolic execution. By selecting a framework that en-

compassed all the necessary features for our approach, we avoided the complexity of integrating

multiple solutions, potentially built for different programming languages. Another factor influenc-

ing our decision was Angr’s proven track record. It has been used in many state-of-the-art binary

analysis tools, such as Arbiter [61] and HeapHopper [18].

5.1.2 Why not use SPIN?

The second major decision we faced was whether to build our own model checker or use an

existing one. Since none of the currently available model checkers met our needs, we would have

had to significantly adapt our approach to integrate another model checker.

One model checker we considered was SPIN [27], one of the most powerful and popular

options available. SPIN is highly efficient and fast, incorporating decades of progress in the field.

31

Chapter 5. BASICS Design and Implementation 32

However, to use this model checker, we would have needed to build our state space and convert it

to the Promela language. This task would be time-consuming and likely not result in a one-to-one

translation, as Promela is designed to model concurrent processes, not the stack memory of binary

programs.

Therefore, we decided to build our own model checker. We implemented the algorithms de-

scribed in [13] and utilized a freely available tool to convert our LTL formulas into omega au-

tomata. The downside of building our own model checker was performance, as our solution could

never match the efficiency of SPIN. However, we anticipated that the concolic execution process

would be the primary performance bottleneck in our solution, so this was not a major concern.

5.2 Extracting data from the binary

The first step in our approach is to take an input binary file, disassemble it using Angr, and extract

a CFG and the user functions from it.

To perform this analysis, we create an Angr project and point it to the location of our binary

file. We specify that we wish to automatically load the simulated procedures of the C library, but

exclude certain C library functions from being loaded for symbolic execution later on during the

space state generation. The full list of unloaded functions can be found in listing 5.1. We found

these functions, did not contribute to the creation of the stack memory state space, only slowed

down the concolic execution process, and created state explosion issues, particularly the functions

related to handling files, since these required a large amount of memory to deal with symbolic file

pointers and symbolic files.

Listing 5.1: Unloaded C-Library Functions
"free", "printf", "puts", "strlen", "printf", "fprintf", "fopen",

"fclose", "fscanf", "strcmp", "system", "exit", "time", "error",
"perror", "fwrite", "printf_unlocked", "puts_unlocked",
"putchar_unlocked", "fputs_unlocked", "fputc_unlocked",
"fprintf_unlocked", "stack_chk_fail"

↪→

↪→

↪→

↪→

5.2.1 Obtaining the program’s CFG

After loading the binary with Angr and creating a project, we can use one of the built-in analyses

to easily extract a CFG of the binary program. The framework offers two CFG recovery analyses:

CFGFast and CFGEmulated.

CFGFast utilizes static analysis to generate the CFG. While it is the faster option, it has accu-

racy issues because some branches can only be resolved during execution. The second analysis,

CFGEmulated, uses symbolic execution to emulate the program and capture a more accurate CFG

at the cost of performance. Since we prioritize accuracy, we choose CFGEmulated to recover the

CFG for our analysis. An example of a small section of a CFG extracted using Angr can be seen

in Figure 5.1

Chapter 5. BASICS Design and Implementation 33

0x401050 (0x401050)

0x00401050: endbr64

0x00401054: bnd jmp qword ptr [rip + 0x2f75]

0x500008 (0x500008) strcpy SIMP

0x401149 (0x401149) copy

0x00401149: endbr64

0x0040114d: push rbp

0x0040114e: mov rbp, rsp

0x00401151: sub rsp, 0x20

0x00401155: mov qword ptr [rbp - 0x18], rdi

0x00401159: mov rdx, qword ptr [rbp - 0x18]

0x0040115d: lea rax, [rbp - 0x10]

0x00401161: mov rsi, rdx

0x00401164: mov rdi, rax

0x00401167: call 0x401050

0x40116c (0x401149) copy+0x23

0x0040116c: nop

0x0040116d: leave

0x0040116e: ret

0x4011b0 (0x40116f) main+0x41

0x004011b0: nop

0x004011b1: leave

0x004011b2: ret

0x40116f (0x40116f) main

0x0040116f: endbr64

0x00401173: push rbp

0x00401174: mov rbp, rsp

0x00401177: sub rsp, 0x110

0x0040117e: mov dword ptr [rbp - 4], 0

0x00401185: jmp 0x401198

0x401198 (0x40116f) main+0x29

0x00401198: cmp dword ptr [rbp - 4], 0xfe

0x0040119f: jle 0x401187

0x401187 (0x40116f) main+0x18

0x00401187: mov eax, dword ptr [rbp - 4]

0x0040118a: cdqe

0x0040118c: mov byte ptr [rbp + rax - 0x110], 0x78

0x00401194: add dword ptr [rbp - 4], 1

0x00401198: cmp dword ptr [rbp - 4], 0xfe

0x0040119f: jle 0x401187

0x4011a1 (0x40116f) main+0x32

0x004011a1: lea rax, [rbp - 0x110]

0x004011a8: mov rdi, rax

0x004011ab: call 0x401149

Figure 5.1: Small section of the Control Flow Graph obtained from the assembled C program of
Listing 2.1

5.2.2 User Function Data

In addition to the CFG, we also need to extract information regarding user-defined functions in

the program. To achieve this, we utilize the previously recovered CFG and iterate through the

basic blocks, extracting their names and addresses. Since each basic block is associated with a

user-defined function, we can identify all the functions using this method. After identifying the

functions, we create a map of the function starting addresses to their names, an example of this

map can be viewed in Listing 5.2.

Listing 5.2: Example of a function name map
{

"main" : 0x40123,
"function_a" : 0x4022d

}

Chapter 5. BASICS Design and Implementation 34

5.3 Model Checker

In this section, we will delve into the design and implementation of the model for binary code and

the model checker itself, the main component of BASICS. Its function is to create a state space of

the stack of the binary program and to verify LTL properties against this state space. Although we

will mention LTL properties in this section, the detailed definition of these security properties will

be discussed later, after the stack memory states have been properly fleshed out.

5.3.1 Theoretical Stack Memory Model

For our novel model checking approach for binary programs [22], we needed to develop a model

appropriate for our model checker. Since we are focusing on stack-based overflow vulnerabilities,

it is evident that our theoretical model must represent this region of memory with sufficient detail.

For this, we define a model as a Labeled Transition System, where each state is designated as a

memory state, composed of stack frames, and the transitions are defined and labeled by memory

transition operators:

Definition 5.1 (Stack Memory State Space). A stack memory state space can be defined as a tuple

(S,Γ, T) where:

• S is a set of memory states.

• Γ is a set of labels representing memory transition operators.

• T ⊆ S × Γ× S is the labeled transition relation.

As an illustration of our transition system, we can consider two memory states M1, and M2,

we can say that there is a transition from M1 to M2, with label "call function" if and only

if (M1,"call function",M2) ∈ T , and we can represent it as:

M1
call function−−−−−−−−−−→M2

In our approach, we define a state of the program’s memory as a collection of function stack

frames. Specifically, at any given point in the program’s execution, there exists a set of active stack

structures, each represented by a stack frame model of a user-defined function.

Definition 5.2 (Memory State). A Memory State M ∈ S can be defined as a finite set of active

stack frames, M = {Fi, Fi+1, ...} in a given instance of the program execution.

Furthermore, we conceptualized a model for the stack frames. Since accuracy was a major

concern, the stack frame was designed as an array of byte states, mirroring the size of the program’s

actual stack frames, thus ensuring a one-to-one correspondence with the real stack. The unique

feature of this model is that each element of this stack model is a byte state, reflecting the current

state of a byte in the real stack. This design choice allows for a detailed and accurate representation

of the stack’s state at any given point.

Chapter 5. BASICS Design and Implementation 35

Definition 5.3 (Stack Frame). A Stack Frame F ∈ M can be defined as a 3-tuple (BS ,L,Σ)
where:

• BS: is the finite array of Byte States

• L: is the stack frame label

• Σ: is the finite set of buffers mapped on the stack frame, where each buffer map σ ∈ Σ, is

defined as σ = {offset, size}

An example of a Stack Frame with no mapped buffers can be viewed in Figure 5.2

Byte State
0

Byte State
1

Byte State
M

Label : Function N

Figure 5.2: Example of a Stack Frame

Each byte in the function stack frame is characterized by one of four states - Free, Critical,

Occupied, and Modified - as outlined in the automaton in Figure 5.3.

Freestart Occupied

Critical

Modified
Write

Risky Write

Write

Write
Write

Figure 5.3: Automaton for the Byte States

Transitions between byte states are exclusively triggered by write operations to the stack frame,

which are classified as either risky or non-risky. A risky write operation typically occurs when

sensitive data, such as return addresses or security tokens, are written to the stack, causing a

transition to the Critical state. Bytes in this state have an increased vulnerability risk. Non-risky

writes, on the other hand, transition a byte to the Occupied or Modified state, depending on the

previous state and the type of write operation. The Free state signifies unoccupied areas of the

stack, which are less likely to be targets of exploitation.

Chapter 5. BASICS Design and Implementation 36

5.3.2 Memory Transition Operators

So far, we have mathematically defined a memory state and its components. However, to generate

the memory state space, we need to define the transitions between these states. Although we have

introduced Risky Write and Non-Risky Write transitions, the actual transitions are more intricate

and complete. We categorize possible memory transitions into two types: direct and indirect.

Direct transitions result from a single assembly instruction directly altering the stack frame.

For example, instructions like mov can directly modify the stack frame. In contrast, Indirect

transitions arise from function calls that modify the stack frame indirectly. An instance of this is

a call to the strcpy function, where the effect on the stack is a consequence of the function’s

execution rather than a direct instruction.

To develop the most accurate model of the program’s memory, it was crucial to account for the

most commonly occurring write operations in x86-64 Assembly. This necessitated an exhaustive

examination of the instruction set in order to identify which instructions have the potential to

modify the stack frame. We performed this study and compiled our findings in Table 5.1.

Type of Transition Operation

Direct MOV
Direct PUSH
Direct POP
Direct XCHG
Direct SUB
Direct LEA
Direct ENDBR64

Indirect CALL

Table 5.1: Direct and Indirect Memory Operations

We found that these transitions account for most of the assembly instructions that interact with

the stack memory in regular binaries. Additional instructions that interact with the stack were

identified, but these were determined to be variations of the instructions present in Table 5.1, such

as cmovz. Note that despite the instruction endbr64 being categorized as a direct transition, in

reality does not change the stack, but rather it indicates the start of a new stack frame, therefore

we consider it as directly affecting the memory state.

The reason for distinguishing the operations into two types was to handle them differently.

Since indirect transitions result from the execution of a function, their impact on the stack frame

cannot be directly determined as some effects are only detectable during runtime. Therefore, we

simulate their effects through concolic execution. In contrast, direct transitions have a predeter-

mined behavior, allowing us to directly calculate their effects on the stack frame.

For direct transitions, we further classify them based on the types of operations they perform

on the stack. We identified the main changes that occur in a stack frame and mapped them to the

corresponding instructions, compiling the results in Table 5.2. Each of these operations will also

Chapter 5. BASICS Design and Implementation 37

be explained in detail in the following subsections.

Instruction Operation Type

push Push
pop Pop

mov, xchg Write
sub Frame extension

endbr64 Frame Allocation

Table 5.2: Mapping of x86-64 to Operation Types

Push

A Push Operation directly affects a single stack frame by appending new bytes to the top of the

stack. The number of bytes appended depends on the size of the operand. This operation is

exemplified in Figure 5.4.

FREE

FREE

PUSH FREE

FREE

OCCUPIED

Figure 5.4: Example of a Push operation of Non-Critical data

In general, the byte states appended to the stack frame will be in the state Occupied, unless the

operand of the instruction is a register containing critical data. For example, push rbp saves the

stack base pointer to the stack, so the bytes appended would be in the Critical state.

Pop

A Pop Operation does the opposite of the push instruction; it directly affects a single stack frame

by removing bytes from the top of the stack. This operation is exemplified in Figure 5.5.

FREE

FREE

POPFREE

FREE

OCCUPIED

Figure 5.5: Example of a Pop operation

Chapter 5. BASICS Design and Implementation 38

Write

A Write Operation modifies byte states on the stack frame at an arbitrary position. It directly

affects a single or a set of byte states by performing a write operation on these and transitioning

them to the next state in the automaton 5.3. This operation is exemplified in figure 5.6

MODIFIED

OCCUPIED

WRITEOCCUPIED

FREE

FREE FREE

Figure 5.6: Example of a Write operation

Frame Extension

A Frame Extension Operation modifies a stack frame by increasing its size according to the

operand. The stack frame is modified by being directly appended with bytes in the Free state,

matching the offset in the operand. This operation is exemplified in Figure 5.7.

SUB 2OCCUPIED

FREE

OCCUPIED

FREE

FREE

FREE

Figure 5.7: Example of a Sub operation

Frame Allocation

Finally, the Frame Allocation Operation modifies a memory state by appending a new stack frame

to the set of active stack frames and setting the first 8 bytes of the stack frame in the Critical state.

These bytes represent the instruction pointer for the callee function and are set up automatically

when a call to a user function is performed.

5.3.3 Generating the State Space

To generate the previously defined state space, we began by implementing the theoretical models

using the Python Programming Language. In particular, we utilized the library Numpy [26] to

build the memory states. Performance was a major concern for the development of the Model

Checker, so we chose Numpy as a solution to build our memory states, especially for allocating

Chapter 5. BASICS Design and Implementation 39

arrays for the Stack Frames. Since these need to be as memory efficient as possible, and given that

a state space for a medium-sized binary can contain thousands of memory state, any extra bytes

per stack frame will quickly add up.

After implementing the Memory States and the Memory Operators, we could finally begin

the process of constructing the state space from a disassembled binary. For this purpose, we

implemented a Depth First Search (DFS) algorithm on the Control Flow Graph (CFG).

First, we identify the entry point of the binary, typically the main function. We then retrieve

the corresponding node from the CFG using the address of the entry point. From this node, we

extract the first instruction and create an initial memory state with it.

Then to generate the state space we iterate through the basic blocks of the CFG and process

one by matching the instructions against the previously defined Memory Transition Operators,

for each match found we create a new memory state with the corresponding memory operations

applied to the stack frames, and create a transition between the current state and this newly created

one, labeling it with the correct Transition Operator.

To ensure the CFG is correctly explored and the generated state space respects the proper

control flow of the program, we maintain a stack through the exploration. This stack manages

paths and their respective states, with each element being a tuple consisting of a path (a list of

basic blocks) and the current state. By keeping track of this stack, we are able to explore different

execution paths and maintain the context of each one efficiently.

Our DFS algorithm initiates by creating this stack with the entry point’s basic block and the

initial state. Then it enters a loop where it processes each path and state in the stack. For each path,

it pops the last element, giving us the current path and state. The current basic block it explores is

the last one in the path obtained from the stack.

In scenarios where the current basic block is part of a loop, and a maximum iteration count

is specified, the block is processed separately in order to simulate the possible effects of the loop.

This ensures that infinite loops are executed to at least an upper bound, which can be specified by

the user, ensuring a greater degree of accuracy and preventing state space explosion issues.

Next, we retrieve the successors of the current basic block from the CFG, and for each succes-

sor, if it is not already in the current path (to avoid cycles), a new path is created by appending the

successor to the current path. The new path and the updated state are then added to the stack for

further exploration. The full exploration and generation process is described in Algorithm 1.

The final state space obtained is a transition system as described by Definition 5.1, imple-

mented using the Rustworkx library [60]. Rustworkx is a graph library for Python built on Rust, a

high-performance programming language. We chose this library due to performance concerns, as

we needed to handle state spaces with thousands of states, potentially occupying many gigabytes

of memory.

Chapter 5. BASICS Design and Implementation 40

Algorithm 1 Explore State Space
Input: CFG, Entry Point
Output: State Space

1: entry point← CFG.get symbol(”main”)
2: node← CFG.get node(entry point.address)
3: entry instruction← node.instruction[0]
4: initial state←MemoryState(instruction=entry instruction)
5: stack ← [([node], initial state)]
6: while stack is not empty do
7: path, current state← stack.pop()
8: current node← path[−1]
9: current state← process node(current node, current state)

10: if is in loop(current node) and loop iterations > 0 then
11: current state← process loop(current node, current state)
12: end if
13: successors← CFG.get successors(current node)
14: for each successor in successors do
15: if successor not in path then
16: new path← path+ [successor]
17: stack.append((new path, current state))
18: end if
19: end for
20: end while

State Space Example

To demonstrate our algorithm and model in action, let’s consider the small C program present in

Listing 5.3.

Listing 5.3: Small example C program

1 int main() {
2 int b = 1;
3 char buf[1];
4 b = 10;
5 buf[0] = '\0';
6 return 0;
7 }

By compiling the program in Listing 5.3 and passing as input to our model checker with the

flag --draw-state-space, we are able to obtain the State Space present in Figure 5.8.

The state space obtained shows the allocation of critical bytes for the return address (RIP) and

the push operation that saves the previous stack base pointer onto the stack, pushing another 8

critical bytes. It also shows the proper allocation of memory for the variables int b and char

buf[1], alongside the modification of the value of b.

Chapter 5. BASICS Design and Implementation 41

-- main --

0: CRITICAL

1: CRITICAL

2: CRITICAL

3: CRITICAL

4: CRITICAL

5: CRITICAL

6: CRITICAL

7: CRITICAL - rip

-- main --

0: CRITICAL

1: CRITICAL

2: CRITICAL

3: CRITICAL

4: CRITICAL

5: CRITICAL

6: CRITICAL

7: CRITICAL - rip

8: CRITICAL

9: CRITICAL

10: CRITICAL

11: CRITICAL

12: CRITICAL

13: CRITICAL

14: CRITICAL

15: CRITICAL - rbp

push

-- main --

0: CRITICAL

1: CRITICAL

2: CRITICAL

3: CRITICAL

4: CRITICAL

5: CRITICAL

6: CRITICAL

7: CRITICAL - rip

8: CRITICAL

9: CRITICAL

10: CRITICAL

11: CRITICAL

12: CRITICAL

13: CRITICAL

14: CRITICAL

15: CRITICAL - rbp

16: OCCUPIED

17: OCCUPIED

18: OCCUPIED

19: OCCUPIED

mov

-- main --

0: CRITICAL

1: CRITICAL

2: CRITICAL

3: CRITICAL

4: CRITICAL

5: CRITICAL

6: CRITICAL

7: CRITICAL - rip

8: CRITICAL

9: CRITICAL

10: CRITICAL

11: CRITICAL

12: CRITICAL

13: CRITICAL

14: CRITICAL

15: CRITICAL - rbp

16: MODIFIED

17: MODIFIED

18: MODIFIED

19: MODIFIED

mov

-- main --

0: CRITICAL

1: CRITICAL

2: CRITICAL

3: CRITICAL

4: CRITICAL

5: CRITICAL

6: CRITICAL

7: CRITICAL - rip

8: CRITICAL

9: CRITICAL

10: CRITICAL

11: CRITICAL

12: CRITICAL

13: CRITICAL

14: CRITICAL

15: CRITICAL - rbp

16: MODIFIED

17: MODIFIED

18: MODIFIED

19: MODIFIED

20: OCCUPIED

mov

-- main --

0: CRITICAL

1: CRITICAL

2: CRITICAL

3: CRITICAL

4: CRITICAL

5: CRITICAL

6: CRITICAL

7: CRITICAL - rip

8: CRITICAL

9: CRITICAL

10: CRITICAL

11: CRITICAL

12: CRITICAL

pop

Figure 5.8: Example of the State Space generated for the code in Listing 5.3 automatically using
the flag --draw-state-space in BASICS

5.3.4 Simulating Calls and Loops through Concolic Execution

So far, we have discussed how we propagate the effects of direct operations onto the memory state,

but we have glossed over the more intricate details of indirect operations and loops.

Since the results of these operations can often only be determined at runtime, we perform

concolic execution to obtain their results. To achieve this, we utilize the symbolic execution engine

of Angr to simulate the calls of functions from the C Standard Library and loops.

Starting with the calls, we distinguish between calls to user-defined functions and calls to

C library functions. For C library functions, we redirect the analysis to a call emulator. This

emulator begins by constructing a call state by matching the function name to a database of C

library functions to determine the number and type of arguments. With this information, we

perform a reverse flow analysis of the register values for the argument registers in the basic block

containing the call instruction. This process is exemplified in Figure 5.9, where we determine the

values for the registers RDI (blue circle) and RSI (green circle), which are the first two registers

used to pass arguments in the System V ABI. The identification of these arguments allows us to

determine if any buffers passed as arguments exist on the current stack frame, an important detail

for the concolic execution process.

After determining this information, we begin the emulation process. First, we determine the

address of the current block’s function entry point, as each basic block is associated with a user-

defined function. To provide context for the symbolic execution, we start our simulation at the

beginning of the current user function.

Next, we create a new entry state in Angr using the project factory, which allows us to create

program states for any valid address in the program. We create this state with symbolic memory

and symbolic registers and set it to the address of the user function’s entry point. We then set the

Chapter 5. BASICS Design and Implementation 42

lea rdx, [rbp - 0x30]
lea rax, [rbp - 0xe]
mov rsi, rdx
mov rdi, rax
call strcpy

1

1

2

2

Figure 5.9: Reverse Flow Analysis of a Basic Black containing a Call.

address of the instruction where the call to the C library function occurs as the target and begin

the concolic execution process using Angr’s explore feature. This feature automatically performs

concolic execution from our starting state until it finds the target state. This process is illustrated

in Figure 5.10.

lea rdx, [rbp - 0x30]
lea rax, [rbp - 0xe]
mov rsi, rdx
mov rdi, rax
call strcpy

....

endbr64
push rbp
mov rbp, rsp
sub rsp, 0x40

main

main

main

Target

Initial State

Concolic
Execution

Figure 5.10: Emulation of a function call through Concolic Execution

Angr steps through all the instructions until the target address, stopping just before executing

it. To emulate the call, we manually step into it, but before doing so, we concretize and save the

contents of the current function’s stack frame. After stepping into the call and allowing Angr to

emulate it, we concretize and save the stack contents again.

By comparing the stack contents before and after the call, we observe the changes made by

the call. We record the positions of the changed bytes, allowing us to propagate the writes to

the stack frame accurately. Additionally, for functions that take input from stdin, we extract the

concretized bytes that were changed, effectively obtaining the concrete input determined by Angr

Chapter 5. BASICS Design and Implementation 43

through concolic execution. We save this input for later use.

After performing concolic execution on a function call, we hook the address of the instruction

where the call occurred and set it to be ignored by Angr in future executions to avoid state space

explosion issues. If a function fails to emulate due to existing hooks, we reattempt the emulation

without the hooks. If Angr completely fails to emulate the function, we assume no stack changes

occurred. This best-effort approach ensures we generate a state space, even if slightly less accurate,

rather than no state space at all.

Loops

For loops, the process is very similar to calls. We start by identifying the loop entry and exit points

through an Angr analysis that identifies existing loops within a CFG. We create an initial state

at the entry point of the current user function and set a target address for the loop’s entry point,

beginning concolic execution until we reach the entry point. Unlike function calls, we cannot

simply step into the loop; we must set a new target address, the loop exit address, and step through

the assembly instructions until we reach that address. To handle potentially infinite loops, we set

a maximum number of iterations and count each time we return to the loop entry address. Once

we reach this number or the exit address, we break out of the loop.

To determine the effects of the loop on the stack, we save the stack contents when we first

reach the entry address and after breaking out of the loop. By comparing both stacks, we identify

which bytes were affected.

5.3.5 Verifying LTL Properties

Finally, after obtaining a memory state space, the final step in our model checking process is ver-

ifying properties against it. We previously defined that our security properties are written as LTL

formulas, and that these formulas could be translated to omega automata to allow their verification

against a state transition system. Before we discuss the syntax of these formulas, or even how they

are translated, let’s look at the process of verifying a formula expressed as an omega automaton

against our state space.

The algorithm for this is straightforward: we compute the product of the state space and the

automaton and look for accepting runs. To do this, we first take an omega automaton, e.g., see

Figure 5.11.

accept_init (!(previous_transition() = call_gets))

Figure 5.11: Omega automaton for the security property ”No Gets Usage” A.4

Then, we perform a Breadth-First Search (BFS) through the generated memory state space

Chapter 5. BASICS Design and Implementation 44

alongside the automaton. For each state transition, we evaluate if the current state satisfies any

of the current conditions for the transitions in the automaton. If so, we transition both the state

space and the automaton to the next state. If we reach a state where no valid transition exists in

the automaton or the automaton is in a non-accepting state at the end of a branch, we consider

that branch as non-conforming to the property, and therefore that the binary does not satisfy that

security property.

The following is the model checking algorithm implemented to verify the LTL properties

expressed as omega automaton:

Algorithm 2 Model Checking Algorithm for ω-automaton
Input: State Space, Omega Automaton
Output: Counter-Example Trace

1: Initialize queue
2: Initialize a set for visited states
3: Enqueue the initial state (state space initial state, omega automaton initial state, empty trace)
4: while queue is not empty do
5: (current state, automaton state, trace)← dequeue(queue)
6: if (current state, automaton state) in visited then
7: continue
8: end if
9: Add (current state, automaton state) to visited

10: Add current state to trace
11: violation← True
12: for each transition in omega automaton.get transitions(automaton state) do
13: if current state.satisfies(transition) then
14: violation← False
15: next transition← transition
16: break
17: end if
18: end for
19: if violation then
20: return trace
21: end if
22: for each successor in state space.get successors(current state) do
23: Enqueue (successor, next transition, trace)
24: end for
25: end while

When a violation is detected for a property, the model checker emits the current trace as a

counter-example trace. This trace consists of the sequence of assembly instructions that led the

program to that invalid state.

At the end of the model checking process, a report is generated. This report includes all the

properties that were verified and all the counter-examples for the properties that were found to be

violated. See Listing 5.4 for an example of such a report.

Chapter 5. BASICS Design and Implementation 45

Listing 5.4: Example of a Model Checking Report

Verified Security Properties:
- no_off_by_one_overflow
- no_underflow_clib
- canary_integrity
- no_suspect_overflows
- no_underflow_loops
- rip_integrity
- no_gets_usage

Found security property violations:

Property: rbp_integrity

Counterexample Trace:
0x4011ca: endbr64
0x4011ce: push rbp
0x4011d2: sub rsp, 0x10
0x4011d6: mov dword ptr [rbp - 4], edi
0x4011d9: mov qword ptr [rbp - 0x10], rsi
0x40121d: call 0x401189
0x40118d: push rbp
0x401191: sub rsp, 0x50
0x401195: mov qword ptr [rbp - 0x48], rdi
0x40119d: lea rax, [rbp - 0x40]
0x4011a7: call 0x401070

1 security property violations found.

5.4 Translating LTL Security Properties

The process of model checking a binary has been explained in detail, but now we must discuss

how these security properties are specified, and how they are translated to ω-automaton.

This module of our solution, allows users to specify their own properties via LTL formulas,

and verify then on binary programs. We developed our own operators that allow to reason about

bytes, stacks, buffers and calls in our memory model. With this, we hope that in the future by

following this approach, more complex behaviors such as Return-Oriented Programming (ROP)

and other unitended behaviors that might not necesseraly classify as malicious, are able to be

detected in binaries.

5.4.1 Security Property Specification

Starting with the security properties, these are LTL formulas as previously mentioned, that can

be specified by the user for the model checker to verify. They follow the LTL syntax of the tool

LTL2BA [23], which can be found in Definition 5.4.

Chapter 5. BASICS Design and Implementation 46

Definition 5.4 (Linear Temporal Logic Syntax). The syntax of the LTL formulas is defined as fol-

lows:

Propositional Symbols:

• true, false

• Any lowercase string

Boolean operators:

• ! (negation)

• -> (implication)

• <-> (equivalence)

• && (and)

• || (or)

Temporal operators:

• [] (always)

• <> (eventually)

• U (until)

• R (release)

• X (next)

Memory Model LTL Operators

To better reason about our memory model, we define additional operators that allow users to

directly specify conditions for arbitrary bytes, stack frames, and buffers, as well as obtain infor-

mation about previous transitions and the existence of canaries in a given stack frame.

Definition 5.5. Stack(f): Given a function f , Stack(f) denotes the stack frame allocated for f .

Definition 5.6. Byte(s, i): For a stack frame s, Byte(i, s) returns the current state of the byte at

position i within s.

Definition 5.7. Buffer(s, b): For a stack frame s and a buffer b, returns the size of the buffer b.

Definition 5.8. Start(b): For a buffer b, returns the position of the first byte of the buffer b.

Definition 5.9. Previous Transition: Returns a string representation of the previous state transi-

tion.

Definition 5.10. Has Canary(s): For a stack frame s, returns True if s contains a canary.

Chapter 5. BASICS Design and Implementation 47

Quantifiers

Additionally, we define syntax for the operators ∀ (forall) and ∃ (exists) to reason about all the

existing stack frames and buffers, without prior knowledge of their existence.

Definition 5.11. forall {stack, buffer}: Performs a logical conjunction for a given proposition

across all existing stack frames or buffers.

Definition 5.12. exists {stack, buffer}: Performs a logical disjunction for a given proposition

across all existing stack frames or buffers.

5.4.2 Modeling Vulnerabilities with Security Properties

Detecting vulnerabilities is one of the main purposes of our novel approach, for this, we created

this entire model-checking framework, and we can now finally discuss how to model vulnerabili-

ties with security properties.

Since we are mainly concerned with buffer overflows, we can start by specifying what hap-

pens in the work case when a buffer overflow occurs, i.e. the stack base pointer address and the

instruction pointer for the previous function are overwritten. In our model, these sections of the

stack should always contain bytes with the state Critical, as they should never be modified. With

this information, we can define the first two and arguably the most important security properties

for the stack memory, that neither the return address nor the stack base pointer should be modified.

To define this property for the return address, we can write that it should be true for every

memory state that for all stacks in that state, the first 8 bytes should all have their state equal to

Critical:

□

(
∀s ∈ Σ

(
7∧

i=0

byte(i, stack(s)) = Critical

))
(5.1)

Similarly, for the stack base pointer, we can write the same thing, but instead for the bytes

between positions 8 and 15 on the stack:

□

(
∀s ∈ Σ

(
15∧
i=8

byte(i, stack(s)) = Critical

))
(5.2)

Where Σ is the set of all stack frames in a given memory state.

The resulting formulas may be simple but, they are very effective at detecting destructive

buffer overflows. For a more complicated behavior, we can consider detecting underflows caused

by loops. To detect these behaviors, we must consider what would happen to our memory model

if one of these vulnerabilities were to occur.

To begin, as the name implies, this type of underflow can only happen if a loop transition

occurred before it. After this transition, there should eventually be a simultaneous write operation

to the byte positioned at the start of the buffer and the byte directly below it, i.e., with an offset of

Chapter 5. BASICS Design and Implementation 48

1 from the start of the buffer, changing their state to Occupied. Additionally, it should be verified

that the byte at an offset of 2 from the start of the buffer was not changed to Occupied.

In other words, the loop caused a write to buffer[0] and buffer[-1], where buffer[-1]

was previously Free, and buffer[-2] is not Occupied. This indicates that there was no variable

stored in the addresses immediately above the buffer, and the loop operation wrote an extra byte

outside the buffer, see Figure 5.12. We have these rather complex conditions to avoid false pos-

itives. Often, variables will be stored at the addresses immediately above the buffer, and in such

cases, we cannot determine if the modification to those bytes was due to the buffer underflow or if

a simple move operation occurred during the loop emulation, something that happens frequently.

...

Free

Buffer Start:
Free

Free

Free

...

Occupied

Buffer Start:
Occupied

Occupied

Free

Loop

Figure 5.12: Example of a Underflow due to a Loop represented in the Memory Model

To write this into a security property, we can specify that, in all states, it must not occur that

the previous transition is a loop, until and including the state (release), in which eventually, there

exists a stack that contains any buffer where the starting byte is set to Occupied, and the byte

directly below it is also set to Occupied, while the byte below this one is not Occupied. This is

expressed in the following LTL formula:

□(¬(previous transition = loop R ♢

(∃s ∈ Σ(∃b ∈ β(byte(start(buffer(b, s)), s) = Occupied ∧

byte(start(buffer(b, s)) + 1, s) = Occupied ∧

byte(start(buffer(b, s)) + 2, s) ̸= Occupied ∧))))
(5.3)

Where β is the set of all buffers in a given stack frame.

Besides these security properties, we also created properties to verify the integrity of the stack

canaries, to verify that the function gets is never used, and additionally to verify that underflows

due to the C Library function calls do not occur. These alongside the previously defined security

properties are present in Appendix A, and are included by default in the security properties the

model checker will attempt to verify for any given binary.

Chapter 5. BASICS Design and Implementation 49

5.4.3 Converting LTL to ω-automaton

As mentioned in Section 5.3.5, to perform the model checking procedure we have to translate

these security properties written in LTL to ω-automaton.

There are several algorithms to perform this translation [24, 20], and we could implement

one of these to perform this task. However, to save implementation time, we decided to use a

pre-existing tool, LTL2BA [23], which implements the algorithm used by Spin to perform this

conversion. This tool, when given an input LTL formula, outputs an omega automaton in Promela

syntax. Since our solution does not work with Promela, we must parse this Promela program to

create an automaton using the Rustworkx library.

We will exemplify how the conversion process is executed for the RIP integrity property.

First, LTL2BA is given the path to the security properties directory, where it finds the security

properties saved in files with the .ltl extension. The contents of this file are shown in Listing

5.5.

Listing 5.5: Contents of rip integrity.ltl

[] ($forall_stack x: (byte(stack(x), 0) = Critical &&
byte(stack(x), 1) = Critical &&
byte(stack(x), 2) = Critical &&
byte(stack(x), 3) = Critical &&
byte(stack(x), 4) = Critical &&
byte(stack(x), 5) = Critical &&
byte(stack(x), 6) = Critical &&
byte(stack(x), 7) = Critical)$)

Since LTL2BA does not support our defined operators and quantifiers, we place expressions

containing these between $ characters. This allows us to extract the expressions and replace them

with generic names that LTL2BA can handle, which are later replaced again for the final automa-

ton.

After processing the formula, LTL2BA outputs the automaton in the format of a never claim

in Promela, as shown in Listing 5.6.

Listing 5.6: Never claim for the RIP integrity property

never { /* [] (p_0) */
accept_init:

if
:: (p_0) -> goto accept_init
fi;

}

We then parse this never claim using a lexer we developed, building a simple Abstract Syntax

Tree (AST). In this AST, we replace the generic expressions with their corresponding propositions

extracted from the .ltl file. For example, in Listing 5.6, p 0 is replaced with the quantifier

Chapter 5. BASICS Design and Implementation 50

expression present in the original LTL formula. Finally, we iterate through the AST and build a

corresponding omega automaton with the Rustworkx library. The final result for the RIP integrity

property is shown in Figure 5.13.

accept_init

 ((forall_stack x: (byte(stack(x), 0) = Critical &&
 byte(stack(x), 1) = Critical &&
 byte(stack(x), 2) = Critical &&
 byte(stack(x), 3) = Critical &&
 byte(stack(x), 4) = Critical &&
 byte(stack(x), 5) = Critical &&
 byte(stack(x), 6) = Critical &&
 byte(stack(x), 7) = Critical)))

Figure 5.13: Final Omega Automata obtained for the RIP Integrity Security Property

5.5 Identifying and Patching Vulnerabilities

We have explained how security properties can be written to model vulnerabilities, and how they

can be verified against a memory state of a binary. Now we will discuss, how we correlate these

security properties to CWE classes, and how we go about identifying their source and patching

them.

5.5.1 Correlating Security Properties to CWE vulnerability classes

First, correlating the security properties to CWE classes was a rather straightforward task. We

created a database in JSON, that can be modified by the user if he or she wishes to add new

properties that correlate to other CWE classes. To create the existing mappings, we researched

the CWE database and identified which classes our security properties represented. Some of the

vulnerability mappings we created can be seen in Listing 5.7.

5.5.2 Examining Counter-Example Traces

To determine the source of vulnerabilities, we need to analyze the report emitted by the model

checker. As previously mentioned, this report contains Counter-Example Traces for each vulnera-

bility that was found to be violated (see Listing 5.4). These Counter-Example Traces consist of a

sequence of instructions that led the program to an invalid state.

To identify the instruction responsible for the vulnerability, we perform a reverse-flow analysis,

meaning we analyze this trace backward. Since most of the buffer overflows we have detected are

due to function calls, we generally find the offending instruction to be the call instruction present

at the end of the trace. However, this is not always the case with loops.

Currently, we only assign vulnerabilities to function call transitions and loop transitions, as we

have not developed a method to find more intricate and niche vulnerabilities caused by other sets

Chapter 5. BASICS Design and Implementation 51

Listing 5.7: Security properties mapped to CWE vulnerability classes

1 {
2 "property" : "rip_integrity",
3 "vulnerability" : ["CWE-121"]
4 },
5 {
6 "property" : "rbp_integrity",
7 "vulnerability" : ["CWE-121"]
8 },
9 {
10 "property" : "no_off_by_one_underflows_loops",
11 "vulnerability" : ["CWE-124"]
12 },
13 {
14 "property" : "no_gets_usage",
15 "vulnerability" : ["CWE-121"]
16 }

of instructions. Since the report is always emitted with counter-example traces, the user is free to

analyze these further.

Once a potential vulnerability is identified, we save its address and class, report it to the user,

and move to the next stage of patching.

5.5.3 Patching Process

Removing vulnerabilities from binary programs is a complex task. Various open-source tools

employ different techniques for this purpose. We chose to work with E9Patch [17] due to its

user-friendliness and effective results for both small and large-scale binaries.

E9Patch bypasses target instructions using a trampoline approach, which necessitated defining

patch templates containing code to execute in place of the target instructions. This approach allows

us to automatically patch calls from the C Library by replacing known vulnerable behavior with

non-vulnerable, identical behavior. For other types of instructions, manual analysis is required to

develop a custom patch.

The patching process begins by taking the report from the vulnerability identifier and matching

the offending calls to our list of patches. If a patch exists for a specific C Library call, it is applied;

otherwise, the patching process is skipped. We have implemented patches for the following C

Library functions: strcpy, scanf, sprintf, gets, and strcat. Users can expand the

number of patches by including the patch binary in the directory named patches.

Once a match for the patch is found, we use the call state for that function call, which was

determined and saved before starting the concolic execution process (described in section 5.3.4).

This call state contains information about the function arguments found in the assembly code,

often allowing us to accurately determine the size of buffers passed to the function call. We also

extract information about the presence of a stack canary.

Based on the information gathered from the call state, we have prepared different patch tem-

Chapter 5. BASICS Design and Implementation 52

plates. For example, the patch for the strcpy function replaces it with the safer alternative

strncpy. The code for this patch is shown in Listing 5.8.

Listing 5.8: Patch template for strcpy function

1 #include "stdlib.c"
2
3 void apply_patch(char *rdi, char *rsi, intptr_t size)
4 {
5 strncpy(rdi, rsi, size - 1);
6 }

This patch works by taking the addresses of RDI and RSI, which contain pointers to the target

and source buffers, respectively, and a size argument for the total size of the target buffer. By ex-

tracting information from the call state, we can determine the size of the target buffer and provide

all necessary information for the patch.

Suppose we cannot extract information from the call state and, therefore, cannot determine

the size of the target buffer. In that case, we use a different patch template that calculates the

maximum possible size for the target buffer during runtime. The code for this patch is shown in

Listing 5.9.

Listing 5.9: Patch template for strcpy function with unknown rdi buffer size

1 #include "stdlib.c"
2
3 void apply_patch(bool canary, void *rbp, char *rdi, char *rsi)
4 {
5 long offset = 0;
6 if (canary)
7 {
8 offset = 8;
9 }
10 long size = (long)rbp - (long)rdi - offset;
11 strncpy(rdi, rsi, size - 1);
12 }

This patch requires information about the presence of a canary and the current stack base

pointer address. It calculates the size of the target buffer as the distance between the pointer in

RDI and the pointer in RBP, minus the offset if a canary exists. Although this version of the patch

is less accurate and may result in increased target buffer sizes, it is still effective at preventing the

corruption of the stack canary, the previous stack frame base pointer, and the return address.

After identifying the correct patch, arguments, and the address of the offending call instruction,

the patcher replaces this information in the command template and calls the E9Patch tool with the

command template shown in Listing 5.10.

If the patch process is successful, a binary with patched appended to the file name is saved

in the same directory as the original binary.

Chapter 5. BASICS Design and Implementation 53

Listing 5.10: E9Patch Command Example

e9tool -M (addr == CALL_ADDRESS) -P replace
apply_patch(PATCH_ARGS)@PATCH_PATH BINARY_PATH -o
BINARY_PATH_patched

↪→

↪→

Additionally, we have developed patches for four other C Library functions, which can be

found in Appendix B.

5.5.4 Validating Patches

The final step after successfully patching a binary is to validate whether the patch has effectively

fixed the original vulnerability. Initially, our approach involved re-performing the model checking

process on the newly patched binary to determine if the previously violated security properties

were still being violated post-patch.

However, due to technical limitations, traditional disassemblers, including Angr, cannot detect

changes in the disassembled code. This results in the state space generated for the original binary

being identical to that of the patched version. Even if the patch is correctly applied and prevents

the application from crashing, the state space obtained remains the same. Consequently, we had

to rethink our approach in light of this limitation and settled on validating the patches using tests

with inputs extracted during concolic execution.

Inputs are extracted when the stack contents are concretized for functions that take input from

stdin. These inputs are then saved to a file, which our validator reads and extracts. Since we

can determine whether the inputs came from argv or stdin, we can correctly pass them to the

program. With these inputs, we can test if an input that previously caused a crash in the binary still

causes a crash in the patched version. This method allows us to determine with some accuracy if

our patch was successful, however, for cases in which neither the original binary nor the patched

version crashes, manual inspection by the user is required. In either case, the validator emits a

report containing this information.

Listing 5.11: Report emitted for a successful patch

Running example with test input: aaaabaaacaaadaaaeaaaf
Running exmaple_patched with test input: aaaabaaacaaadaaaeaaaf
Original binary crashed, patched binary did not. Patch was successful.

Chapter 6

Evaluation

In this chapter, we will detail the procedures used to evaluate the implementation of BASICS.

We will begin by discussing the setup utilized for testing, then characterize the dataset used, and

finally discuss the results obtained in the subsequent sections.

Given the challenges previously identified in Section 4.1, we have identified several key as-

pects for evaluating our implementation: the accuracy of the state space, the capability of the

model checker to detect property violations, the ability of the security properties to model vul-

nerabilities, the efficacy of the patches, and the scalability of the implementation. Based on these

aspects, we propose the following research questions, which we will address in this evaluation:

• Q1: Is the generated memory state space accurate?

• Q2: Do the security properties accurately model buffer overflow vulnerabilities?

• Q3: Does BASICS detect property violations when vulnerabilities occur?

• Q4: Are the performed patches effectively mitigating these vulnerabilities?

• Q5: Does BASICS scale for larger binaries?

6.1 Evaluation Setup

To evaluate our tool’s capabilities more thoroughly, we divided the evaluation into two parts.

Firstly, we used a synthetic dataset composed of small C programs from the NIST SARD reposi-

tory [45] to assess the tool’s detection accuracy and patch efficacy.

These programs were classified as either vulnerable or non-vulnerable, which served as the

ground truth for comparison against our tool’s results. With this data, we created a confusion

matrix and determined the following metrics:

• True Positives (TP): The number of correctly identified vulnerable programs.

• True Negatives (TN): The number of correctly identified non-vulnerable programs.

55

Chapter 6. Evaluation 56

• False Positives (FP): The number of non-vulnerable programs incorrectly identified as vul-

nerable.

• False Negatives (FN): The number of vulnerable programs incorrectly identified as non-

vulnerable.

G
ro

un
d

Tr
ut

h
Predicted

Vulnerable Not Vulnerable
Vu

ln
er

ab
le

TP FN

N
ot

Vu
ln

er
ab

le

FP TN

Figure 6.1: Confusion Matrix

Using these metrics, we can then calculate:

• Accuracy: The proportion of true results (both true positives and true negatives) among the

total number of cases.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

• Precision: The proportion of true positive results among all positive results.

Precision =
TP

TP + FP
(6.2)

• Recall: The proportion of true positive results among all actual positives.

Recall =
TP

TP + FN
(6.3)

• F1 Score: The harmonic mean of precision and recall.

F1 Score = 2× Precision×Recall
Precision+Recall

(6.4)

Chapter 6. Evaluation 57

For the second phase, we utilized real open-source applications written in C, sourced from

repositories such as SourceForge, GitLab, and GitHub. In this phase, our focus was on testing

the scalability of our tool across applications of varying sizes. Therefore, we did not calculate

the previous metrics for this evaluation step. Instead, the emphasis was on assessing the tool’s

performance in terms of handling larger and more complex codebases.

6.1.1 Experimental Setup

All experiments were conducted on an Ubuntu 24.04 virtual machine with 4 CPU cores and 48

GB of RAM. The VM was hosted on a Proxmox server equipped with 2 Xeon E5-2670 processors

and 64 GB of DDR3 RAM. The toolchain configuration included Python 3.10.12 implemented via

PyPy 7.3.12, Angr 9.2.102, LTL2BA 1.3, and E9Patch 1.0.0-rc9.

6.2 Evaluation with the NIST SARD dataset

In this section, we will detail the dataset used to evaluate the detection capabilities of our tool

and the efficacy of the patches. Following this, we will present and discuss the obtained results,

addressing research questions Q1-Q4.

6.2.1 Dataset Characterization

The dataset obtained from NIST SARD [45] contains 135 small programs written in the C pro-

gramming language, with approximately 20 lines of code (LoC) each. These programs include

functions such as strcpy, scanf, sprintf, and gets, which our tool is capable of patching.

Each program was manually classified as either containing an instance of a Buffer Overflow vul-

nerability or not, to establish a ground truth dataset. In total, the dataset comprises 53 vulnerable

cases and 82 non-vulnerable cases. A breakdown of the dataset by function type is presented in

Table 6.1.

Function Type Function Cases

Input gets 2
scanf 29

Data Manipulation strcpy 79

Output sprintf 25

Total 135

Table 6.1: Breakdown of the test cases obtained from NIST SARD.

6.2.2 Detection Results

We compiled all these test cases using the GCC compiler with the default flags and processed the

resulting binaries with our tool. For each binary, we attempted to verify the following security

Chapter 6. Evaluation 58

properties: No Gets Usage, RIP Integrity, RBP Integrity, Canary Integrity, and No Off-by-One

Overflow. The definitions for each property are provided in Appendix A.

The output of our tool included a model checking report, a visualization of the state space,

and, when applicable, a patched binary. We classified a binary as vulnerable if at least one of the

security properties was violated, as this would result in a potential CWE-121 report from our tool.

We compiled our detection results in a confusion matrix in Table 6.2, and the calculated metrics

in Table 6.3

Tool Classification

Vulnerable Not Vulnerable

Ground Truth Vulnerable 34 19

Not Vulnerable 3 79

Table 6.2: Confusion matrix for the classification results of the NIST SARD dataset.

Metric Result

Accuracy 0.84
Precision 0.92

Recall 0.64
F1-Score 0.76

Table 6.3: Metrics obtained for the classification results of the NIST SARD dataset

Based on the results presented in both Table 6.2 and Table 6.3, we can assert that our tool,

leveraging our novel approach, successfully identified vulnerabilities in 64% of all vulnerable

cases. Additionally, it generated false positives for only 3 out of 82 non-vulnerable cases, resulting

in a precision of 92% and an overall accuracy of 84%.

To better understand the results of our tool, and find the root causes of the 3 instances of false

positives and 19 instances of false negatives, we conducted a further analysis of the generated state

space for some of these cases.

Starting with the 3 false positives, after examining the state space and model checking reports,

we found that our direct memory operators correctly constructed the state space. However, the

problem lay in the emulation of the strcpy function in all three cases. The resulting stack

changes from the concolic execution process indicated a larger write to the stack than in reality,

triggering a security property violation in our model checker. This issue seems to stem from our

implementation of the strcpy function emulation process rather than the state space construction

itself. It should be possible to mitigate this issue by revising the implementation of the strcpy

emulation.

Regarding the 19 false negatives, our examination of the state space revealed two separate

issues. The first issue, similar to that of the false positives, was related to the concolic execution

of C library functions. In some cases, the process reported no changes in the stack when, in

Chapter 6. Evaluation 59

reality, there were changes, leading to false negatives. This issue could be mitigated by reviewing

the concolic execution implementation and gaining a better understanding of how Angr emulates

these functions.

The second issue involved overflows not modeled by our current security properties, such as

an extra byte being written to the end of a buffer. Listing 6.1 presents such a case. Since we

have no properties modeling this kind of behavior, the tool could not detect the presence of a

vulnerability in these cases. Addressing this would require implementing the relevant security

property. However, this necessitates a careful study of how such behavior affects the state space.

If the property is too broad, the tool will produce false positives, and if it is too restrictive, it will

not detect this behavior.

Listing 6.1: Example of a buffer overflow not modeled by the defined security properties in
Appendix A.

1 #include <stdio.h>
2 #include <string.h>
3
4 int main (int argc, char **argv) {
5 char str1[10];
6 char str2[10];
7 scanf("%11s", str2);
8 strcpy(str1,str2);
9 printf("String copied: %s\n", str1);
10 return(0);
11 }

Finally, to fully understand our results, we analyzed the true positives by examining the emitted

reports and state spaces alongside the original C code. We concluded that the generated state space

was accurate and correctly represented the behavior of the C code. Furthermore, the counter-

examples in the reports accurately matched the vulnerable paths in the state space.

With the conclusion of this data analysis, we can answer Q1, Q2, and Q3 from our research

questions.

Regarding Q1, we can answer affirmatively. We consider the state spaces generated as accurate

since most of them correctly represent the expected memory operations found in the C source code,

except for the cases where the concolic execution process yields no results.

For Q2, we find that our defined security properties can model destructive buffer overflows,

such as those that overwrite the stack canary, the stack base pointer, or the return address. More

subtle overflows, such as writing an extra byte at the end of a buffer, are not modeled by our de-

fined security properties. However, these could also be modeled by defining additional properties.

Therefore, we can also answer affirmatively to Q2.

Finally, for Q3, we found that when the state space was accurately constructed, the model

checker was able to detect violations of security properties that modeled stack buffer overflows.

Consequently, it was able to detect the presence of these vulnerabilities in the program, allowing

us to answer Q3 affirmatively.

Chapter 6. Evaluation 60

6.2.3 Patching Results

In addition to detecting vulnerabilities, our tool also attempts to fix them via corrective patches.

Although we have implemented corrective patches for only a few C library functions, the dataset

we are using contains vulnerabilities originating exclusively from these functions. This allows us

to evaluate the efficacy of the patching process for the programs classified as vulnerable by our

tool.

As previously mentioned, our tool validates the patches using concolic inputs extracted from

the concolic execution process. For each case, it emits a report stating whether the program crashed

before and after the application of the patch. If the patch prevents the program from crashing, we

report the patch as successful. Additionally, if a program did not crash before and after the patch,

we also consider the patch successful but issue a warning for the user to manually check the patch.

Considering this, we broke down the results from the reports by the function being patched and

compiled them in Table 6.4.

Positive Cases Patch

Function True Reported Perfomed Successful

strcpy 23 26 26 26
sprintf 10 10 10 10
gets 1 1 1 1

Total 34 37 37 37

Table 6.4: Breakdown of the patches performed per function.

The results show that 100% of the patches performed were successful, and the 3 false positives

reported were also patched. This raises some questions regarding our patch validation process, so

we manually examined each patched binary.

Starting with the 3 reported false positives, we found that despite being patched, the behavior

of the programs did not change and continued as intended. We conclude that this was due to our

process of determining the arguments for the function calls. Since we can detect these arguments

with some degree of accuracy, the behavior of the program does not change when the patch is

performed and the function call is replaced by an equivalent one.

For the other cases, we found that the vulnerabilities were successfully patched in all instances.

However, we discovered that the behavior of some programs containing sprintf was slightly

altered. In these cases, the output of this function was different because the patch failed to correctly

determine the format string arguments used. Therefore, we conclude that while the patches were

effective at removing the buffer overflow vulnerabilities, they did not always preserve the correct

behavior. We believe this issue can be corrected by further refining the patch templates. This

allows us to answer positively to Q4.

Chapter 6. Evaluation 61

6.3 Evaluation with Open-Source Applications

The dataset from NIST SARD allowed us to evaluate the performance of our tool using synthetic

tests. However, these tests might not accurately represent real-world applications. Therefore, to

better evaluate our tool, we gathered six applications written in C from open-source repositories

such as SourceForge, GitHub, and GitLab. These applications span different contexts, including

networks, systems, and an educational project.

The size of the projects varied between 15 to 261 lines of code (LoC), allowing us to observe

how our tool scales with differently sized binaries. For these programs, it was unknown whether

they had buffer overflow vulnerabilities before testing.

6.3.1 Results

For each of these projects, we compiled them using their respective Makefile when one was

present, otherwise, we utilized GCC with the default compilation flags. We then analyzed the

binaries with our tool and compiled information about each project, along with our findings when

testing the tool, in Table 6.5.

Application Files LoC Verification Time
(in seconds)

Potential
Vulnerabilities

Patch
Performed

Macgen 1 15 10.10 0 0
HTML Parser 1 70 32.64 1 1
IPV6 Validator 1 34 3.46 1 1
Thread-Fifo 3 261 4.79 0 0
Hash-Map 2 203 759.73 0 0
Contacts Management 1 112 188.42 1 1

Table 6.5: Evaluation Results for Open-Source Applications

Starting with the vulnerabilities detected, our tool found potential buffer overflows in three of

the six projects: HTML Parser, IPV6 Validator, and Contacts Management. Since these projects

were not extensive, we analyzed the source code files and confirmed that they were indeed vul-

nerable. In both HTML Parser and IPV6 Validator, we found a misuse of the strcpy function,

which our tool successfully patched and validated. However, in the Contacts Management appli-

cation, the buffer overflow vulnerability was due to a scanf call without a format string. The

patch applied by our tool for this program was unsuccessful, causing it to hang.

For the other projects, we manually analyzed the source code and found no obvious buffer

overflow vulnerabilities, affirming that our tool correctly classified these as non-vulnerable.

6.3.2 Performance Evaluation

Regarding the performance of our tool, we measured the time it took to build the state space and

perform the verification process. The results are compiled in Table 6.5.

Chapter 6. Evaluation 62

Analyzing these results, one might expect the verification time to be proportional to the lines

of code (LoC), but this was not the case. For example, the project with the largest codebase,

Thread-Fifo, had a verification time of 4.79 seconds, significantly faster than the smallest project,

Macgen, which took 10.10 seconds to verify.

To understand the cause, we inspected the source code and found that while Macgen had a

single for loop, Thread-Fifo contained no loops or branches, resulting in a significantly shorter

verification time. Similarly, Hash-Map and Contacts Management were outliers in terms of ver-

ification time, taking significantly longer than the other projects. This was due to the number of

branches and loops in their code. The Contacts Management project had many branches due to

the use of switch statements and if statements within for loops. For Hash-Map, there were

nested loops, which greatly increased the verification time and memory usage.

These results point to the state explosion problem [62], a common issue with formal methods.

Despite our efforts to avoid it in our implementation, the number of paths in our state space grows

exponentially with the number of branches in a program. For each branch, two paths are created,

and for each of these, further paths can be created, and so on. We estimate the number of paths in

our memory state space to be proportional to the following:

No Paths ∝ 2N
o Branches

Thus, for a program with 10 if-else statements, we can expect approximately 1024 possible

execution paths in our state space.

Another aspect to consider is the memory required to store the state space. For larger programs

(∼ 700 LoC), our main issue with verification was not time but memory, as our tool would fill the

48GB of RAM in our VM and crash the process. We tried several approaches to mitigate this, such

as reducing the accuracy of the concolic execution process in the settings of Angr and limiting the

simulated functions to those directly affecting the stack, but we ultimately could not circumvent

this issue.

Finally, we can answer the last research question, Q5, regarding the scalability of the tool.

Considering our results and analysis, we must answer Q5 negatively, as our tool does not scale

well for larger binaries due to the state explosion problem.

Chapter 7

Conclusion

This dissertation set out to develop a novel, scalable, and accurate approach to detect and remove

stack buffer overflows in binary programs.

To achieve this, we researched several existing techniques for vulnerability detection in bina-

ries, including formal methods. Our research led to the development of a model checking approach

to verify security properties in the stack memory of a binary. We implemented this approach in

BASICS: Binary Analysis and Stack Integrity Checker System, utilizing the Angr framework to

generate the state space and perform concolic execution on function calls and loop constructs.

With this generated state space, we verified security properties written in LTL, which modeled

buffer overflow vulnerabilities. When these properties were violated, they pointed to potential

vulnerabilities. After verifying the properties, any violations identified as addressable vulnera-

bilities were patched using E9Path to redirect the program control flow to a patch template. We

verified the validity of the patches using inputs extracted from the concolic execution process.

With BASICS implemented, we evaluated it using a dataset of vulnerable programs from NIST

SARD and real applications collected from SourceForge, GitHub, and GitLab. Our results showed

that the tool successfully detected violations of the specified security properties, leading to the

detection of buffer overflow vulnerabilities, and performed patches to mitigate some of these vul-

nerabilities.

The evaluation results showed that our tool had an accuracy of 0.84 in detecting buffer overflow

vulnerabilities in the NIST SARD dataset, with a recall of 0.64 and a precision of 0.92. Consider-

ing this is a novel approach for detecting these vulnerabilities in binaries through model checking,

these results show great promise. We believe that with a better implementation, we could achieve a

precision of 1 and an improved recall score. By improving the concolic execution process, gaining

a better understanding of the Angr framework and its intricacies, and adding additional security

properties to model more subtle vulnerabilities, we could further increase detection accuracy.

For the detected vulnerabilities in the NIST SARD dataset, BASICS managed to perform

patches on the programs, as these contained vulnerable calls for which we provided patches.

These patches were effective in removing the vulnerabilities but demonstrated some limitations

in maintaining the original program behavior, particularly for the sprintf function.

An evaluation of BASICS performance was also conducted, but it encountered state explosion

63

Chapter 7. Conclusion 64

issues, indicating it does not scale well for larger binaries.

Based on the results obtained, we can affirm that we managed to satisfy most of our initial

objectives, specifically creating a novel approach to accurately detect buffer overflows. However,

we did not succeed in making it scalable as originally intended.

7.1 Limitations

While our approach shows promise, our implementation has some limitations. To better under-

stand these and how they might be addressed, we will go over each one and discuss them in detail:

• Scalability: We found our implementation to suffer from the state explosion problem, caus-

ing it to fail to scale for larger binaries. This issue plagues model checking approaches, so

it was not surprising that our approach would suffer from it as well. The origin of it in our

case is the branches present in the assembly code. Since our approach requires all possible

paths to be verified, it results in an extremely large number of states. To mitigate this, we

could rethink our implementation, particularly if we could do a pre-processing of the binary,

where we attempt to find all dead branches and prune them. Another solution would be to

simplify the state space and reduce the number of memory operators, but this might lead to

inaccuracies in state space.

• Memory Usage: During our evaluation process, we discovered our solution used a stagger-

ing amount of memory. While this is, of course, directly correlated to the previous issue of

scalability, it also has some of its own quirks to consider. Specifically, we found that most of

the memory consumed was not from the state space itself, but from Angr, particularly dur-

ing the concolic execution process. Since we were simulating large chunks of the binary at

a time, this was to be expected. In order to mitigate it, we could rethink our concolic execu-

tion approach and attempt to simulate smaller chunks of the binary at a time, which should

result in improved memory usage and execution time. Another way to decrease memory

usage would be to store the differences between each state, instead of storing a separate

instance of each one. However, this would not have as drastic of an effect as improving the

efficiency of the concolic execution process.

• Patching Validation: We utilize inputs extracted during the concolic execution process to

validate our patches, and while this process gives us some degree of information about patch

efficacy, it often requires further manual inspection, as it is unable to provide more insight

than whether the program crashes or not. For this issue, we believe utilizing our initial

approach of performing model checking on the patched binary would show more insight

into the effectiveness of the patch. However, for this approach, a different patching solution

would be required, as with the E9Patch tool, our model checker does not detect changes in

the binary.

Chapter 7. Conclusion 65

7.2 Future Work

With the capabilities and limitations of our approach and implementation in mind, we outline

several areas for future research to enhance the applicability of our tool:

• Refining Patch Templates: Currently, we only address five C-library functions for patch-

ing, although users can specify their own patch templates. Future work should focus on

improving existing patches to consistently match the original program behavior and adding

patches for more complex behaviors, such as underflows and overflows caused by loops.

• Additional Security Properties: Our current security properties model only the simplest

and most destructive overflow behaviors. Future research should develop security properties

that model more complex behaviors, such as ROP and data integrity violations.

• Incorporating Read States into the Memory Model: Our current approach models only

write operations to the stack. Incorporating read operations would expand our tool beyond

buffer overflows, making it a more general stack memory model checker. With these capa-

bilities, we could explore security properties related to data confidentiality.

• Modeling Heap Memory: Expanding our tool to include modeling of the heap memory

is another area for future research. Since the heap memory also involves its own memory

operations, modeling this region alongside the stack memory would enable our tool to check

for heap overflows, use-after-free, and double-free vulnerabilities.

7.3 Final Remarks

Formal methods are not usually employed in this area of security, which currently sees most of the

recent work published using either dynamic analysis or machine learning. While these methods

can yield good results, they lack a critical aspect that we believe is important: proof of absence.

Dynamic analysis can confirm the presence of a vulnerability, but it is unable to confirm its

absence. Similarly, machine learning can only provide a classification with a certain probability of

being correct. In contrast, formal methods can provide mathematical proof that a certain behavior

is absent or present. This capability is extremely powerful, as it allows users to be absolutely

certain that their product is free of certain behaviors.

Although this sounds excellent, formal methods face significant challenges, such as the state

explosion problem, which can make them impractical for larger problems. Despite this, research

in this area is invaluable. By continuing to address and mitigate these issues, we can develop new

and improved methods that bring us closer to proving the absence of vulnerabilities in software.

We believe this thesis provides valuable contributions to the field by presenting a new ap-

proach that, with better implementation, could become a valuable asset for the analysis of the

stack memory in binaries.

Acronyms

BFS Breadth-First search. 43

BMC Bounded Model Checking. 20, 21

CFG Control Flow Graph. 17, 27, 32, 33, 39

CLMs Code Language Models. 22

CPU Central Processing Unit. 10, 16

CWE Common Weakness Enumeration. xiv, xxi, 1, 4, 7, 50, 51

DFS Depth-First Search. 39

ELF Executable and Linkable Format. 17

LoC Lines of Code. 57, 61, 62

LTL Linear Temporal Logic. 12–14, 24, 27, 32, 34, 43, 45, 49, 63

ML Machine Learning. 19

PE Portable Executable. 17

ROP Return-Oriented Programming. 45, 65

67

Bibliography

[1] CWE - common weakness enumeration. https://cwe.mitre.org/. Accessed: 8-07-2024.

[2] Dennis Andriesse. Practical binary analysis: build your own Linux tools for binary instru-

mentation, analysis, and disassembly. No Starch Press, San Francisco, 1st edition, 2019.

[3] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and Fabian Yamaguchi. Ef-

ficient and flexible discovery of php application vulnerabilities. In 2017 IEEE European

Symposium on Security and Privacy (EuroSP), page 334–349, Paris, April 2017. IEEE.

[4] Andreea Bican, Răzvan Deaconescu, Wei Ngan Chin, and Quang-Trung Ta. Verification

of c buffer overflows in c programs. In 2018 17th RoEduNet Conference: Networking in

Education and Research (RoEduNet), pages 1–6, 2018.

[5] Zeki Bilgin, Mehmet Akif Ersoy, Elif Ustundag Soykan, Emrah Tomur, Pinar Comak, and

Leyli Karacay. Vulnerability prediction from source code using machine learning. IEEE

Access, 8:150672–150684, 2020.

[6] El Habib Boudjema, Sergey Verlan, Lynda Mokdad, and Christèle Faure. Vyper: Vulnera-

bility detection in binary code. SECURITY AND PRIVACY, 3(2):e100, March 2020.

[7] Muhammad Arif Butt, Zarafshan Ajmal, Zafar Iqbal Khan, Muhammad Idrees, and Yasir

Javed. An in-depth survey of bypassing buffer overflow mitigation techniques. Applied

Sciences, 12(13), 2022.

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based greybox

fuzzing as markov chain. IEEE Transactions on Software Engineering, 45(5):489–506, 2019.

[9] Hao Chen, Drew Dean, and David A. Wagner. Model checking one million lines of c code.

In Network and Distributed System Security Symposium, 2004.

[10] Hao Chen and David A. Wagner. Mops: An infrastructure for examining security properties

of software. Technical report, USA, 2002.

[11] Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha. Grey-box concolic testing

on binary code. In 2019 IEEE/ACM 41st International Conference on Software Engineering

(ICSE), pages 736–747, 2019.

69

https://cwe.mitre.org/

Bibliography 70

[12] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs.

In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the Construction

and Analysis of Systems (TACAS 2004), volume 2988 of Lecture Notes in Computer Science,

pages 168–176. Springer, 2004.

[13] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem. Handbook

of Model Checking. Springer Publishing Company, Incorporated, 1st edition, 2018.

[14] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan

and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,

pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[15] The U.S. Department. CWE - 2023 CWE top 25 most dangerous software weaknesses. 2023.

[16] W. Du. Computer Security: A Hands-on Approach. Wenliang Du, 2019.

[17] Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury. Binary rewriting without control

flow recovery. In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2020, page 151–163, New York, NY, USA,

2020. Association for Computing Machinery.

[18] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan Shoshitaishvili, Christopher Kruegel,

and Giovanni Vigna. HeapHopper: Bringing bounded model checking to heap implemen-

tation security. In 27th USENIX Security Symposium (USENIX Security 18), pages 99–116,

Baltimore, MD, August 2018. USENIX Association.

[19] Eldad Eilam. Reversing: Secrets of Reverse Enginnering. Wiley Publishing, Inc., 2005.

[20] Kousha Etessami and Gerard Holzmann. Optimizing büchi automata. volume 1877, 05 2003.

[21] Diogo Ferreira. Automatic binary patching for flaws repairing using static re-writing and

reverse dataflow analysis, 2022. http://hdl.handle.net/10451/58214.

[22] Luı́s Ferreirinha. and Ibéria Medeiros. On the path to buffer overflow detection by model

checking the stack of binary programs. In Proceedings of the 19th International Confer-

ence on Evaluation of Novel Approaches to Software Engineering - ENASE, pages 719–726.

INSTICC, SciTePress, 2024.

[23] Paul Gastin and Denis Oddoux. Fast ltl to büchi automata translation. In Gérard Berry,

Hubert Comon, and Alain Finkel, editors, Computer Aided Verification, pages 53–65, Berlin,

Heidelberg, 2001. Springer Berlin Heidelberg.

[24] Rob Gerth, Den Dolech, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple on-the-fly

automatic verification of linear temporal logic. Proceedings of the 6th Symposium on Logic

in Computer Science, 15, 12 1995.

http://hdl.handle.net/10451/58214

Bibliography 71

[25] Jacob A. Harer, Louis Y. Kim, Rebecca L. Russell, Onur Ozdemir, Leonard R. Kosta, Ak-

shay Rangamani, Lei H. Hamilton, Gabriel I. Centeno, Jonathan R. Key, Paul M. Elling-

wood, Erik Antelman, Alan Mackay, Marc W. McConley, Jeffrey M. Opper, Peter Chin,

and Tomo Lazovich. Automated software vulnerability detection with machine learning.

(arXiv:1803.04497), August 2018. arXiv:1803.04497 [cs, stat].

[26] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-

tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,

Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan

Haldane, Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,

Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and

Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, Septem-

ber 2020.

[27] Gerard Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-

Wesley Professional, 1st edition, 2011.

[28] Yikun Hu, Yuanyuan Zhang, and Dawu Gu. Automatically patching vulnerabilities of binary

programs via code transfer from correct versions. IEEE Access, 7:28170–28184, 2019.

[29] Yao-Wen Huang, Fang Yu, C. Hang, Chung-Hung Tsai, D.T. Lee, and Sy-Yen Kuo. Ver-

ifying web applications using bounded model checking. In International Conference on

Dependable Systems and Networks, 2004, pages 199–208, 2004.

[30] João Inácio and Ibéria Medeiros. Corca: An automatic program repair tool for checking and

removing effectively c flaws. 2023 IEEE Conference on Software Testing, Verification and

Validation (ICST), pages 71–82, 2023.

[31] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. Impact of code language models on

automated program repair. (arXiv:2302.05020), April 2023. arXiv:2302.05020 [cs].

[32] Arvinder Kaur and Ruchikaa Nayyar. A comparative study of static code analysis tools

for vulnerability detection in c/c++ and java source code. Procedia Computer Science,

171:2023–2029, 2020. Third International Conference on Computing and Network Com-

munications (CoCoNet’19).

[33] Taddeus Kroes, Koen Koning, Erik Van Der Kouwe, Herbert Bos, and Cristiano Giuffrida.

Delta pointers: buffer overflow checks without the checks. In Proceedings of the Thirteenth

EuroSys Conference, pages 1–14, Porto Portugal, April 2018. ACM.

[34] laf intel. Circumventing fuzzing roadblocks with compiler transformations, 2016.

[35] K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional Correctness, vol-

ume 6355 of Lecture Notes in Computer Science, page 348–370. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2010.

Bibliography 72

[36] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecurity, 1, 12 2018.

[37] Hongyu Liu, Sam Silvestro, Xiaoyin Wang, Lide Duan, and Tongping Liu. CSOD: Context-

Sensitive Overflow Detection. In 2019 IEEE/ACM International Symposium on Code Gener-

ation and Optimization (CGO), pages 50–60, Washington, DC, USA, February 2019. IEEE.

[38] Zhenhao Luo, Pengfei Wang, Baosheng Wang, Yong Tang, Wei Xie, Xu Zhou, Danjun Liu,

and Kai Lu. Vulhawk: Cross-architecture vulnerability detection with entropy-based binary

code search. In Proceedings 2023 Network and Distributed System Security Symposium, San

Diego, CA, USA, 2023. Internet Society.

[39] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press,

Cambridge, Massachusetts, 1999.

[40] Iberia Medeiros, Nuno Neves, and Miguel Correia. Statically detecting vulnerabilities by

processing programming languages as natural languages. IEEE Transactions on Reliability,

71(2):1033–1056, June 2022.

[41] Eric Mercer and Michael Jones. Model checking machine code with the gnu debugger. In

Patrice Godefroid, editor, Model Checking Software, pages 251–265, Berlin, Heidelberg,

2005. Springer Berlin Heidelberg.

[42] Martin Monperrus. Automatic software repair: A bibliography. ACM Comput. Surv., 51(1),

jan 2018.

[43] Muhammad Nadeem, Byron Williams, and Edward Allen. High false positive detection of

security vulnerabilities: A case study. 03 2012.

[44] Huu-Vu Nguyen and Tayssir Touili. Caret model checking for malware detection. In Pro-

ceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of

Software, SPIN 2017, page 152–161, New York, NY, USA, 2017. Association for Computing

Machinery.

[45] NIST. Software Assurance Reference Dataset (SARD). https://www.nist.gov/itl/ssd/

software-quality-group/samate/software-assurance-reference-dataset-sard. Accessed: 20-

07-2024.

[46] Aleph One. Smashing the Stack for Fun and Profit. Phrack Magazine, 7(49), 1996.

[47] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios Portokalidis, Bing Mao,

and Jun Xu. Sok: All you ever wanted to know about x86/x64 binary disassembly but were

afraid to ask, 2020.

[48] Eduard Pinconschi, Rui Abreu, and Pedro Adão. A comparative study of automatic program

repair techniques for security vulnerabilities. In 2021 IEEE 32nd International Symposium

on Software Reliability Engineering (ISSRE), pages 196–207, 2021.

https://www.nist.gov/itl/ssd/software-quality-group/samate/software-assurance-reference-dataset-sard
https://www.nist.gov/itl/ssd/software-quality-group/samate/software-assurance-reference-dataset-sard

Bibliography 73

[49] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of

Research and Development, 3(2):114–125, 1959.

[50] Thomas Reinbacher, Martin Horauer, Bastian Schlich, Jörg Brauer, and Florian Scheuer.

Model checking assembly code of an industrial knitting machine. In Proceedings of the 2009

4th International Conference on Embedded and Multimedia Computing, EM-Com 2009,

2009.

[51] Rebecca L. Russell, Louis Kim, Lei H. Hamilton, Tomo Lazovich, Jacob A. Harer, Onur

Ozdemir, Paul M. Ellingwood, and Marc W. McConley. Automated vulnerability detection

in source code using deep representation learning, 2018.

[52] Andreas Schaad and Dominik Binder. Deep-Learning-Based Vulnerability Detection in Bi-

nary Executables, volume 13877 of Lecture Notes in Computer Science, page 453–460.

Springer Nature Switzerland, Cham, 2023.

[53] Bastian Schlich and Stefan Kowalewski. [mc]square: A model checker for microcontroller

code. In Proceedings - ISoLA 2006: 2nd International Symposium on Leveraging Appli-

cations of Formal Methods, Verification and Validation, pages 466–473. IEEE Computer

Society, 2006.

[54] B. Schwarz, Hao Chen, D. Wagner, G. Morrison, J. West, J. Lin, and Wei Tu. Model check-

ing an entire linux distribution for security violations. In 21st Annual Computer Security

Applications Conference (ACSAC’05), pages 10 pp.–22, 2005.

[55] Koushik Sen. Concolic testing. In Proceedings of the 22nd IEEE/ACM international confer-

ence on Automated software engineering, pages 571–572, 2007.

[56] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for c.

SIGSOFT Softw. Eng. Notes, 30(5):263–272, sep 2005.

[57] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for c.

In Proceedings of the 10th European Software Engineering Conference Held Jointly with

13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,

ESEC/FSE-13, page 263–272, New York, NY, USA, 2005. Association for Computing Ma-

chinery.

[58] Tushar Sharma, Maria Kechagia, Stefanos Georgiou, Rohit Tiwari, and Federica Sarro. A

survey on machine learning techniques for source code analysis. ArXiv, abs/2110.09610,

2021.

[59] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey

Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel, and Giovanni

Vigna. SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis. In IEEE

Symposium on Security and Privacy, 2016.

Bibliography 74

[60] Matthew Treinish, Ivan Carvalho, Georgios Tsilimigkounakis, and Nahum Sá. rustworkx: A

high-performance graph library for python. Journal of Open Source Software, 7(79):3968,

2022.

[61] Jayakrishna Vadayath, Moritz Eckert, Kyle Zeng, Nicolaas Weideman, Gokulkr-

ishna Praveen Menon, Yanick Fratantonio, Davide Balzarotti, Adam Doupé, Tiffany Bao,

Ruoyu Wang, Christophe Hauser, and Yan Shoshitaishvili. Arbiter: Bridging the static and

dynamic divide in vulnerability discovery on binary programs. In 31st USENIX Security

Symposium (USENIX Security 22), pages 413–430, Boston, MA, August 2022. USENIX

Association.

[62] Antti Valmari. The state explosion problem, pages 429–528. Springer Berlin Heidelberg,

Berlin, Heidelberg, 1998.

[63] Tielei Wang, Tao Wei, Zhiqiang Lin, and Wei Zou. Intscope: Automatically detecting integer

overflow vulnerability in x86 binary using symbolic execution.

[64] Oualid Zaazaa and Hanan El Bakkali. Dynamic vulnerability detection approaches and tools:

State of the Art. In 2020 Fourth International Conference On Intelligent Computing in Data

Sciences (ICDS), pages 1–6, Fez, Morocco, October 2020. IEEE.

[65] Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfiability solvers. In

Ed Brinksma and Kim Guldstrand Larsen, editors, Computer Aided Verification, pages 17–

36, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[66] Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen. A survey of

learning-based automated program repair. ACM Transactions on Software Engineering and

Methodology, 33(2):1–69, February 2024.

[67] Yang Zhang, Xiaoshan Sun, Yi Deng, Liang Cheng, Shuke Zeng, Yu Fu, and Dengguo Feng.

Improving Accuracy of Static Integer Overflow Detection in Binary, volume 9404 of Lecture

Notes in Computer Science, page 247–269. Springer International Publishing, Cham, 2015.

Appendix A

LTL Security Properties

Set of stacks in a given memory state: Σ

Set of buffers in a given stack frame: β

A.1 RIP Integrity

□

(
∀s ∈ Σ

(
7∧

i=0

byte(i, stack(s)) = Critical

))

A.2 RBP Integrity

□

(
∀s ∈ Σ

(
15∧
i=8

byte(i, stack(s)) = Critical

))

A.3 Canary Integrity

□

(
∀s ∈ Σ

(
has canary(s) =⇒

23∧
i=16

byte(i, stack(s)) = Critical

))

A.4 No gets usage

□(previous transition ̸= call gets)

A.5 No off by one overflow

□(¬(∃s ∈ Σ(byte(15, stack(s)) =Modified ∧ byte(14, stack(s)) = Critical)))

75

Appendix A. LTL Security Properties 76

A.6 No underflow clib

□(¬(previous transition ∈ clib R ♢

(∃s ∈ Σ(∃b ∈ β(byte(start(buffer(b, s)), s) = Occupied ∧

byte(start(buffer(b, s)) + 1, s) = Occupied ∧

byte(start(buffer(b, s)) + 2, s) ̸= Occupied ∧))))

A.7 No underflow loops

□(¬(previous transition = loop R ♢

(∃s ∈ Σ(∃b ∈ β(byte(start(buffer(b, s)), s) = Occupied ∧

byte(start(buffer(b, s)) + 1, s) = Occupied ∧

byte(start(buffer(b, s)) + 2, s) ̸= Occupied ∧))))

Appendix B

Patch Templates

B.1 gets

Listing B.1: Patch template for gets function

1 #include "stdlib.c"
2
3 void apply_patch(char* rdi, intptr_t size) {
4 fgets(rdi, size, stdin);
5 }

B.2 gets unknown buffer size

Listing B.2: Patch template for gets function with unknown rdi buffer size

1 #include "stdlib.c"
2
3 void apply_patch(bool canary, void* rbp, char* rdi) {
4 long offset = 0;
5 if (canary) {
6 offset = 8;
7 }
8 long size = (long)rbp - (long)rdi - offset;
9 fgets(rdi, size, stdin);
10 }

B.3 strcpy

Listing B.3: Patch template for strcpy function

1 #include "stdlib.c"
2
3 void apply_patch(char *rdi, char *rsi, intptr_t size)
4 {
5 strncpy(rdi, rsi, size - 1);
6 }

77

Appendix B. Patch Templates 78

B.4 strcpy unknown buffer size

Listing B.4: Patch template for strcpy function with unknown rdi buffer size

1 #include "stdlib.c"
2
3 void apply_patch(bool canary, void *rbp, char *rdi, char *rsi)
4 {
5 long offset = 0;
6 if (canary)
7 {
8 offset = 8;
9 }
10 long size = (long)rbp - (long)rdi - offset;
11 strncpy(rdi, rsi, size - 1);
12 }

B.5 sprintf

Listing B.5: Patch template for sprintf function

1 #include "stdlib.c"
2
3 void apply_patch(char* rdi, char* rsi, intptr_t size, ...) {
4 va_list args;
5 va_start(args, size);
6 vsnprintf(rdi, size-1, rsi, args);
7 va_end(args);
8 }

B.6 sprintf unknown buffer size

Listing B.6: Patch template for sprintf function with unknown rdi buffer size

1 #include "stdlib.c"
2
3 void apply_patch(bool canary, void* rbp, char* rdi, char* rsi, ...) {
4 long offset = 0;
5 if (canary) {
6 offset = 8;
7 }
8 long size = (long)rbp - (long)rdi - offset;
9 va_list args;
10 va_start(args, rsi);
11 vsnprintf(rdi, size-1, rsi, args);
12 va_end(args);
13 }

Appendix B. Patch Templates 79

B.7 strcat

Listing B.7: Patch template for strcat function

1 #include "stdlib.c"
2
3 void apply_patch(char* rdi, char* rsi, intptr_t size) {
4 strncat(rdi, rsi, size - strlen(rdi) - 1);
5 }

B.8 strcat unknown buffer size

Listing B.8: Patch template for strcat function with unknown rdi buffer size

1 #include "stdlib.c"
2
3 void apply_patch(bool canary, void* rbp, char* rdi, char* rsi) {
4 long offset = 0;
5 if (canary) {
6 offset = 8;
7 }
8 long size = (long)rbp - (long)rdi - offset;
9 strncat(rdi, rsi, size - strlen(rdi) - 1);
10 }

B.9 scanf

Listing B.9: Patch template for scanf function

1 #include "stdlib.c"
2
3 void apply_patch(char* rdi, char* rsi, intptr_t size, ...)
4 {
5 char* buf[size];
6 fgets(buf, size-1, stdin);
7
8 va_list args;
9 va_start(args, size);
10 snprintf(rdi, size-1, rsi, buf);
11 va_end(args);
12 }

Appendix B. Patch Templates 80

B.10 scanf unknown buffer size

Listing B.10: Patch template for scanf function with unknown rdi buffer size

1 #include "stdlib.c"
2
3 void apply_patch(bool canary, void* rbp, char* rdi, char* rsi, ...)
4 {
5 long offset = 0;
6 if (canary)
7 {
8 offset = 8;
9 }
10 long size = (long) rbp - (long) rsi - offset;
11 char* buf[size];
12 fgets(buf, size-1, stdin);
13 va_list args;
14 va_start(args, rsi);
15 snprintf(rdi, size-1, rsi, buf);
16 va_end(args);
17 }

	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	Introduction
	Motivation
	Objectives
	Contributions
	Structure of the document

	Background
	Software Vulnerabilities
	Buffer Overflow
	The Stack Region

	Model Checking
	Linear Temporal Logic
	-automaton
	Satisfiability Modulo Theories

	Concolic Execution
	Binary Programs
	Angr Framework
	Binary Patching

	Related Work
	Vulnerability Discovery Techniques
	Detecting Vulnerabilities in Source Code
	Vulnerability Discovery in Binary Programs
	Fuzzing

	Model Checking in Software Security
	Formal Verification of C programs
	Model Checking Binaries

	Code Repair
	Source Code Repair
	Binary Patching

	BASICS Solution
	Challenges
	Performing Model Checking on x86-64 binaries
	Detecting Vulnerabilities through Model Checking
	Performing Concolic Execution on Binary Code
	Patching Vulnerabilities in Binary Programs

	BASICS a Model Checker for x86-64 Binaries
	Binary Data Extractor
	Security Property Converter
	Model Checker
	Vulnerability Patcher and Validator

	BASICS Design and Implementation
	Framework Choices
	Angr Framework
	Why not use SPIN?

	Extracting data from the binary
	Obtaining the program's CFG
	User Function Data

	Model Checker
	Theoretical Stack Memory Model
	Memory Transition Operators
	Generating the State Space
	Simulating Calls and Loops through Concolic Execution
	Verifying LTL Properties

	Translating LTL Security Properties
	Security Property Specification
	Modeling Vulnerabilities with Security Properties
	Converting LTL to -automaton

	Identifying and Patching Vulnerabilities
	Correlating Security Properties to cwe vulnerability classes
	Examining Counter-Example Traces
	Patching Process
	Validating Patches

	Evaluation
	Evaluation Setup
	Experimental Setup

	Evaluation with the NIST SARD dataset
	Dataset Characterization
	Detection Results
	Patching Results

	Evaluation with Open-Source Applications
	Results
	Performance Evaluation

	Conclusion
	Limitations
	Future Work
	Final Remarks

	Acronyms
	References
	LTL Security Properties
	RIP Integrity
	RBP Integrity
	Canary Integrity
	No gets usage
	No off by one overflow
	No underflow clib
	No underflow loops

	Patch Templates
	gets
	gets unknown buffer size
	strcpy
	strcpy unknown buffer size
	sprintf
	sprintf unknown buffer size
	strcat
	strcat unknown buffer size
	scanf
	scanf unknown buffer size

